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Some applications of Pick’s Theorem

MARCEL TELEUCA! AND LARISA SALI?

ABSTRACT. The article examines some properties of geometric figures represented on lattices. In particular,
some applications of Pick’s Theorem about the area of the simple polygons are presented.

1. INTRODUCTION

Pick’s formula ties together quantities of a completely different nature. The area of an
object, such as a square or a right triangle, is proportional to the product of the lengths
of two of its sides. Instead, Pick’s formula provides a way to measure area that does not
use any multiplication. The mathematician Georg Alexander Pick published in 1899 an
article in which he proved the formula that bears his name. The theorem was popularized
by Hugo Steinhaus.

In teaching, there is a growing interest in geometry problems on grids. This particular
sensitivity suggests the opportunity to reexamine models related to the Pick plane.

Definition 1.1. Let us consider two families of parallel lines on the plane, dividing the plane into
equal parallelograms. The set L of all intersection points of these lines (or the set of vertices of all
parallelograms) is called a lattice, and the points themselves are called lattice nodes. Any of these
parallelograms is called a fundamental parallelogram or a lattice-generating parallelogram.

It is important to keep in mind that the lattice consists of points (nodes), and the straight
lines themselves do not belong to it.
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FIGURE 1. Lattices

The orthogonal integer lattice Z, consisting of points in the Cartesian coordinate sys-
tem with integer coordinates, is given by the equations x = m and y = n, where m,n € Z
(Figure 1). The lattice of points is not directly related to the family of lines, unlike its fun-
damental parallelogram. Thus, the same family of points can be obtained by intersecting
other families of lines that are not orthogonal (Figure 1 b, c).
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A lattice on a plane is a powerful tool that allows one to translate analytical problems
into geometric language and back.

So, for example, we have Z? = L(i, j), where i and j are two mutually perpendicular
vectors of unit length. Moreover, any lattice can be defined exactly this way by choos-
ing two vectors that begin at the same lattice node and have their endpoints at different
vertices of some fundamental parallelogram.

Definition 1.2. Given a lattice, the triangle with vertices at the lattice nodes is called primitive
if, apart from its vertices, it does not have other lattice nodes inside itself or on its sides.

Every fundamental parallelogram can be cut diagonally into two primitive triangles.
Also, two primitive congruent triangles will complement each other to a parallelogram.
The set of primitive triangles of the lattice Z* does not contain acute triangles.
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FIGURE 2. Primitive triangles

Let us start with two situations.

Example 1.1. Four crickets are placed on the vertices of a square on the orthogonal integer
lattice Z2. Every minute, one of the crickets jumps over another cricket. The new position
of the jumping cricket is symmetrical to its previous position, with the cricket it jumped
over being the center of symmetry. Prove that crickets cannot simultaneously end up in
the vertices of a larger square [11].

Solution. It is known that in the Cartesian coordinate system the point M (z,y) sym-
metrical to the point with coordinates (a, b) is the point M (2a — x, 2b — y). If initially the
crickets are positioned at the points (0; 0), (0; 1); (1;0); (1;1), in the result of any symmetric
jump, each cricket will end up at a point with integer coordinates.

We assume that the answer is positive, that is, at some point the crickets will be posi-
tioned in the vertices of a square with side greater than 1. Jumping in opposite order, they
should get to the vertices of the smaller one. But, starting to jump from the vertices of the
larger square, they will always get to the nodes of the grid consisting of large squares. In
other words, the distance between them cannot be less than the side of the large square.
A contradiction.

Example 1.2. Three crickets (represented as dots) are placed on three vertices of a square
with a side length of 1. Each cricket can jump over one of the other two crickets to a new
position that is symmetrical to its previous position, with the cricket it jumped over being
the center of symmetry. It is obvious that crickets will always land on the nodes of the
grid. What positions can the crickets occupy after several jumps? [11]

Solution. Consider the triangle ABC with the vertices situated in the vertices of a square
grid. We will consecutively perform transformations as follows.

Step 1. We will identify symmetrical points with one of the vertices of the triangle,
considering one of the other two vertices as the center of symmetry. For example, S¢(B) =
B’. We form a new triangle AB'C.
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Step 2. For this triangle, choosing as the center of symmetry, for example, vertex C, we
repeat the operation, identifying the symmetric of vertex A: Sc(A) = A’. We form a new
triangle A’B'C.

We can perform these transformations successively any number of times (Figure 3).
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FIGURE 3. Three crickets

As a result of these transformations, the following can be observed:

1) The vertices of the triangles obtained by the named transformations will be lattice
points.

2) The area of the obtained triangles is invariant.

3) The area of each triangle obtained as a result of a transformation is equal to .

4) If a primitive triangle is completed to a parallelogram, then this parallelogram will
contain no nodes either inside or on the sides.

Another convenient way to define a lattice on a plane is as follows.

Definition 1.3. Let a and b be non-zero and non-collinear vectors and O the origin of the coor-
dinate system. Then the set L(a,b) of all points P such that OP = ma + nb, where m,n are
integers, is a lattice.

Starting with three non-zero and non-coplanar vectors, it is easier way to define lattices
of points in space. Thus, the orthogonal integer lattice Z? in space is obtained, for example,
by choosing (in the Cartesian coordinate system) three vectors ¢ = (1,0,0), j = (0,1,0),
k= (0,0,1).

Just as on a plane, a spatial lattice can be constructed starting from an arbitrary paral-
lelepiped. Lattices can be defined similarly in spaces of higher dimensions.

Definition 1.4. We say that a polygon is simple if all its sides connect points of the 72 grid.

The main properties of fundamental parallelograms and primitive triangles are con-
tained in the following statements.

Theorem 1.1. All primitive triangles on a lattice have equal areas.

Theorem 1.2. For the smallest distance d between the lattice points with the area of the funda-
mental parallelogram A the following inequality holds:

[2A
(1.1) a<y/ 5

Equality is achieved on a lattice, where the fundamental parallelogram is a rhombus with an acute
angle of 60 degrees.

Definition 1.5. Simple triangles with sides 1, 1,/2 on Z? are called minimal.
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Let’s highlight some of the simplest properties of lattices.

1) A straight line passing through two lattice nodes contains an infinite number of lattice
nodes. In this case, all neighboring nodes located on this line are equidistant.

2) The parallel translation of the plane (space), which transfers one lattice node to another
node, translates the lattice onto itself.

3) The lattice is symmetric relative to the midpoint of any segment connecting two nodes
of this lattice. Moreover, the midpoints of all segments ending at the nodes of a given
network form a new network that includes the old one.

4) (Parallelogram rule.) If three vertices of a parallelogram are lattice nodes, then its
fourth vertex is also a lattice node. In space: if four vertices of a parallelepiped that do
not lie in the same plane are lattice nodes, then its remaining vertices are also lattice
nodes.

5) If a parallelogram with vertices at the lattice nodes contains no other nodes on its edges
or within its interior, then this is the fundamental parallelogram of the lattice. More-
over, this property is the criterion for a parallelogram to be considered fundamental.

A similar property holds for a fundamental parallelepiped in space.

The next theorem relates to the impossibility of locating a regular triangle on an integer
lattice Z?2. It was apparently proved by E. Lucas in 1878 (see [5]). His proof can be based
on elementary information from the theory of divisibility of numbers or using elements
of trigonometry.

Theorem 1.3. A regular triangle cannot be placed on an integer lattice 7.

Proof. 1. Let us assume that a regular triangle can be positioned on the lattice in the desired
way and that one of its vertices is at the origin of the coordinate system, and its other two
vertices have coordinates (a,b) and (¢, d). We can assume that four integers «, b, ¢, d have
no common divisors other than +1. The latter follows from the fact that the points (0, 0),
(a/k,b/k), (c/k,d/k) are also the vertices of an equilateral triangle if k is the common
divisor of all four numbers (Figure 4 a,b).

(1.2) A2+ = +d*=(a—c)+ (b—d)?
(1.3) a® +b* =+ d* = 2(ac + bd)
(1.4) a? + % + 2 + d? = 4(ac + bd).

The sum of the squares of four numbers is divisible by 4. Then either all four numbers
are even or all odd. The first is impossible because these numbers, according to our choice,
are mutually exclusive. The second is impossible because then the identity a® + b? =
(a —¢)? 4+ (b — d)? is not fulfilled, because its left part is not divisible by 4, and the right
part is divisible. This contradiction proves the formulated statement.

II. The second proof is based on trigonometry. Note that if two rays with origins at
the origin of coordinates pass through nodes (a,b) and (c,d) of the Z? lattice (Figure 4),
then the tangent of the angle j between these rays is a rational number or is not defined,
because

tana — tanfB d_»b ad — be

c —

1+ tanatanf 1+% T ac+bd

Therefore, if we assume that there is an equilateral triangle with vertices at the nodes of
the Z? lattice, then two rays with origins at one of its vertices, containing the sides of
the triangle, form an angle of 60°. But tg 60° = /3, which is an irrational number, and

(1.5) tan(a — B) =
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FIGURE 4. Regular triangle on the lattice

therefore it is impossible to place an equilateral triangle on the Z? lattice. It is clear that
a regular hexagon also cannot be located on the Z? lattice, since otherwise, by connecting
its vertices through one, we would get a regular triangle located on the lattice, which, as
we already know, is impossible. However, one can arrange both a regular triangle and a
regular hexagon in space on the Z? lattice. It is enough to present a regular hexagon. The
midpoints of the edges of the cube lie in the same plane and are the vertices of a regular
hexagon. O

2. PICK’S THEOREM AND ITS APPLICATIONS

Theorem 2.4. (Pick’s theorem.) Consider a simple polygon P. Let i be the number of points in
Z? interior to the polygon and b - the number of integer points on its boundary (including both
vertices and points along the sides). Then, the area Ap of the polygon can be calculated as follows:
Ap=i+%-1

The papers [1, 4, 5, 10, 11] explore various didactic aspects of the applications of Pick’s
theorem. The formula can be generalized to formulas for certain types of non-simple
polygons.

But this formula cannot be generalized to three-dimensional space.

Pick’s formula allows a simple proof for Theorem 1.3. We assume that the regular
triangle is placed on the lattice 72. Then, according to Pick’s formula, the area of the
triangle is a rational number. On the other hand, the area of the regular triangle (Fig. 4b),
where a, b are integers, is an irrational number

2 2
2.6) A:“Ibwi

It follows that the assumption was wrong, i.e. the regular triangle cannot be placed on
the lattice Z2.

Example 2.3. The midpoints of the sides of a square are connected by segments to the
vertices as shown in Figure 5. Find the ratio of the area of the square to the area of the
octagon formed by these segments [11].

Proof. Since we need to find the ratio of the areas of the two surfaces, the dimensions of
the squares are irrelevant. So, let’s consider a square 12x12 located on a Z? grid; the edges
of the square are on straight grids. We find that all vertices of the octagon are connected
to the nodes of the grid; moreover, from here it is easy to see that this octagon is not
regular (Figure 5) — it is equilateral, but not equiangular. From Pick’s formula it now
easily follows that the area of the octagon is 21 + 8/2 — 1 = 24. Therefore, the requested
ratio of areas is 6. O
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FIGURE 5. Octagon in a square

A basic result from vector geometry, which we will not prove here, states that given
any three non-collinear points A, B, C in the plane, every vector OQ may be represented
in the form

(2.7) 0Q =rOA + sOB +tOC
for unique #, s, t, satisfying
(2.8) r+s+t=1.

Moreover, Q is in the interior of the AABC if and only if such 7, s, t are all positive. In
similar fashion, any point on the line through A and B can be expressed as rOA + sOB
with r+s=1, and lies between A and B if and only if r, s > 0.

Example 2.4. Let a lattice point A in Z? be given and O A contains no other lattice points.The
point P is the point on the lattice closest to the line O A. For every lattice point Q the vector OQ
can be expressed in the form nOP + kO A for some pair of integers (n, k). Moreover, when OQ) is
expressed in such form, we have n = 2Ap0Q .

Proof. If P is the point closest to line OA4, it follows that there are no lattice points inside
the AOPA or on its boundary, other than O, P, A themselves, since any such point would
be closer than P to line OA. Therefore, by Pick’s Theorem, Axopa = %

Let @ be a lattice point. By Pick’s Theorem, Aroga = 5 for some integer n. Thus
Anoga =1 - Apopa. By the base-height formula for the area of a triangle, it follows that
Q is on the line parallel to line OA that passes through the endpoint of the vector nOP .
Thus OQ = nOP + kOA for some real k, where the endpoint of kKOA is a lattice point. We
assert that & is an integer. Indeed, if {k} denotes the fractional part of k, then {k} = k — [k]
and the endpoint of the vector {k}OA is a lattice point which lies on segment O A. Since
OA has no lattice points, we must have k = 0. This completes the proof of the lemma. O

Example 2.5. (IMO 1987, P5) Let n > 3 be an integer. Prove that there is a set of n points in
the plane such that the distance between any two points is irrational and each set of three points
determines a non-degenerate triangle with rational area.

Proof. By Pick’s theorem we can choose any n lattice points and their area immediately is
rational (in fact even half-integer so in fact by scaling the coordinates of the points by a
factor of 2 we can get the triangles to have natural area). So we now only have to properly
select n lattice points such that the distance between any 2 of them is irrational. This can
be done in various ways. For example:
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1.) Take n points on the parabola y = z?.
The distances between them are not rational because using that the distance be-

tween (z1;y1) and (z9;y2) is /(21 — 22)2 + (y1 — y2)2, we get:
(2.9) d[(a,a®), (b,6*)] = (a = b)* + (a® = b*)* = (a = b)*(1 + (a +b)?)

that is not a perfect square. Even though this construction is straightforward to present
and the perfect square factors out cleanly, it’s not easy to come up with. The next ex-
ample is slightly more challenging to write rigorously but is much easier to conceptu-
alize.

2.) Let C be an integer much larger than n. Then define the points A; = (C + 1,C°*1),
Ay = (C +2,0%), .., A, = (C+ n,C°"). Of course the triangles will not
be degenerate. If C is large enough, d(A;, A;)? = (i — j)? + (C** — C¢*)? is an
integer but not a perfect square because as we chose C to be large the second square is
significantly bigger than the first. So we can see that:(C“** — C°17)? < d(4;, 4;)* =
(i—7)24+(CCH—CCHI)2 < (CF+1—CY*I+1)2. In fact, even though these constructions
all satisfy the condition, it is unlikely to guess them on the first try. A more direct and
approachable method is to construct a set by induction.

]

Example 2.6. (24th Bay Area Mathematical Olympiad, Mar 1, 2023, https://www.bamo.org/)

A lattice point in the plane is a point with integer coordinates. Let T be a triangle in the plane
whose vertices are lattice points, but with no other lattice points on its sides. Furthermore, suppose
T contains exactly four lattice points in its interior. Prove that these four points lie on a straight
line.

Solution 1: We will use Pick’s Theorem. The triangle 1" described in the problem must
have area 4 + 2 — 1 = 3. With no loss of generality, let us assume T has one vertex at the
origin O, which we identify with the zero vector. Call the other two vertices A and B. Of
the four lattice points in the interior of T, let P be the point closest to line OA. It follows
that there are no lattice points lying inside the AOPA or on its boundary, other than O,
P, A themselves, since any such point would be closer than P to line OA. Therefore, by
Pick’s Theorem, the AOP A has area %

As already noted, Apoap = 2. Thus, by the Example 2.4, OB = 90P — kOA for some
integer k (the minus sign in the expression is not a typo, but a deliberate convenience
for what follows). Rearranging, and using the fact that OO is the zero vector, we have
OP = £E0A+ tOB + 85£00. Since P is in the interior of AOAB, we have 0 < k < 8. We
will consider the possible values of k in turn.

If k = 0(mod3), then 1OB = 30P — £0A is a lattice point lying on segment OB. This
contradicts the specification of T" as having no lattice points on its sides.

If k = 2(mod3), then 0B + 204 = 30P — %320A is a lattice point lying on AB,
similarly yielding a contradiction. The remaining possibilities are k = 1,4, 7.

If £ = 1, then the interior of T" contains in its interior the four collinear lattice points
OP = ;0A + ;OB + §00,20P = 30A + 30B + 300, 30P = 30A + 30B + 300,
40P = 304 + ;OB + 00.

If £ = 4, then the interior of T' contains in its interior the four collinear lattice points
OP = 30A+ ;OB + 500, 30P — OA = $0A+ 30B + 300, 50P — 20A =
20B + 200, 70P — 30A = }0A+ IOB + 1 00.

If £ = 7, then the interior of T' contains in its interior the four collinear lattice points
OP = 104 + 10B + 100, 20P — 04 = 304 + 20B + 200, 30P — 204 = 304 +

20A +
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30B + 200, 40P — 30A = §0A + OB + 300. Thus, the four lattice points inside T
are collinear in every case, as desired.

Solution 2: We assume the same basic facts about vectors, as well as Pick’s Theorem
and the determinant formula for the area of a parallelogram.

Let T have vertices A(x1,y1), B(2z2,y2), and C(z3, y3).

We know that

T2 —T1 Y2 — Y1
T3 —T1 Y3 — 4

Consider equation (2.10) modulo 3, that is, over the field Z/3Z. In this setting, the
determinant is zero, so the vectors u = (29 — 21,y2 — y1) and v = (x5 — x1,y3 — y1) are
linearly dependent. If either of these vectors is zero (mod 3, that is), or if they are equal,
then the trisection points of a side of T" are lattice points, which contradicts the problem
statement. Thus u,v # 0 and v = —v. An immediate consequence is that (z; + x2 +
3,91 + Y2 + y3) = v+ v + 3(xs3,y3) = 0 over Z/3Z, with the result that the centroid,
OG =1/3(0OA+0B+0C), is a lattice point. Now consider the triangle ABG, whose area
is 1/3Aaapc = 3/2. By Pick’s Theorem, the triangle ABG has either:

* one lattice point in its interior and none on its boundary (besides vertices), or

¢ two lattice points on its boundary.

Case 1: The triangle ABG has a lattice point in its interior and none on its boundary.
In this case, a repetition of the preceding (mod 3) argument shows that the centroid G of
the triangle ABG is a lattice point. In this case, OG; + k(OG — OG,) for k = 0,1,2,3 are
four collinear lattice points inside 7.

Case 2: ABG has two lattice points on its boundary. Note that if at least two lattice
points occur on a line, then the lattice points on that line occur at regular intervals. Thus
the two lattice points on the boundary of ABG are either the midpoints of AG and BG or
the trisection points of one of these sides (say, AG).

In the two cases, if we extend side AG beyond G, the next lattice point occurring on the
extension is respectively either on 7" (at the midpoint of side BC), which is a contradiction,
or inside T, being then the fourth collinear lattice point inside 7.

(2.10) 2AAABC =

Example 2.7. Let Vi be a convex polyhedron in a three-dimensional system of coordinates, whose
vertices all have integer coordinates. Let V}, be the polyhedron whose vertices” radius vectors are
obtained by multiplying the radius vectors of the vertices of Vi by k. Let N (V') be the number of
points with integer coordinates located inside the polyhedron V or on its surface, and by (V') -
volume of the polyhedron V. Prove that

(2.11) N(Vs) = 3N (Va) +3N(V1) — 1 = 6u(V1).

Proof. We can observe that on a straight line (in the one-dimensional space) the next for-
mula is correct

(2.12) N(Vi) —1=1(V2),

where [(11) is the length of the segment V7, the extremities of which have integer coordi-
nates.

Let us show that for a convex polygon V; on the plane, with vertices at the points of an
integer lattice the following formula holds

(2.13) N(Vz) —=2N(V1) +1=2Ay,,
where Ay, is the area V;.
Formula (2.12) shows that (2.13) is true for degenerate two - dimensional polygons-

segments. From here it immediately follows that if the polygon V; is divided by a diagonal
into two parts V{ and V"’ then
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(2.14) N(Vo) —=2N (V1) + 1 =[N(V5) —2N(V]) + 1] + [N(V3") — 2N (V{") + 1].

Therefore, it all comes down to proving (2.13) for triangles. Let us place the origin O at

A

FIGURE 6. Double triangle area

the vertex of the integer triangle V; (Figure 6) and let A and B be its two other vertices.
Let OA’ B’ be triangle V5. From Figure 6 it is easy to find that the left side of formula (2.13)
is equal to the number N (II) of integer points in the figure II, which is a parallelogram
OAC B without sides AC and BC.

If A is the area of the parallelogram OACB (equal to 2A4y,, then to prove (2.13) it
remains to check that V(II) = Ay and this fact is proven by Pick’s Theorem.

Let’s move on to the three-dimensional case. It is enough to prove the formula (2.11)
only for tetrahedron, where the proof is similar to the two-dimensional case, but more
complex additional constructions will be required (Figure 7). From the polyhedron V5 =
OA’B'C’, three polyhedrons of type V5 located “in the corners” A’, B’, C' are thrown out,
their pairwise intersections (of type V7) are added and one extra point P is thrown out.
The remainder is a parallelepiped IT with volume 6.(V;) without part of the surface, and
using these parallelepipeds the entire space can be paved without intersections. Therefore
N(II) = p(II), which proves the required statement.

Some interesting generalizations of Pick’s formula were obtained by J. Reeve [9].

FIGURE 7. Tetrahedron
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3. CONCLUSIONS

The simple lattice served as a starting point for K. Gauss to compare the area of a
circle with the number of points with integer coordinates located inside it. What regular
polygons can be placed on a lattice so that all its vertices fall on the nodes of the lattice?
The G. Pick’s formula, that is close connected with the well-known combinatorial formula
of L. Euler on graphs, gives an answer to this question. The plane lattice is a powerful
tool that allows translating analytical problems into geometric language and vice versa.
In this context, interesting and instructive things become evident in the process of solving
problems encountered at various mathematical competitions.

For other related developments, see also [2], [3], [8] and references cited there.
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