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Coincidence and common fixed point theorems for nonself
G-almost contractions in Banach spaces endowed with a
graph

PHIKUL SRIDARAT1, VASILE BERINDE2,3 , AND SUTHEP SUANTAI4

ABSTRACT. In this paper, we establish some coincidence point theorems and common fixed point theorems
for nonself G-almost contractions in Banach spaces endowed with a directed graph and display some examples
to confirm our main results. Our main theorems extend and generalize many known theorems in this area.

1. INTRODUCTION

A large number of the important nonlinear problems of applied mathematics reduce to
seeking a solution of an equation which in turn may be reduced to looking for the fixed
points of a certain mapping or the coincidence points or common fixed points of two or
more mappings. This is the reason why the study of the coincidence points and common
fixed points of some mappings satisfying some contractive type mappings attracted many
mathematicians.

Many of the researches in metric fixed point theory deals with single-valued self map-
pings T : X → X and multi-valued self mappings T : X → P (X) satisfying a contraction
type condition, where X is a set endowed with a certain metric structure. These outputs
are mainly generalizations of the Banach contraction principle [10], which can be stated
as follows.

Theorem 1.1. Let (X, d) be a complete metric space and T : X → X a contraction, i.e., a map
satisfying

d(Tx, Ty) ≤ α · d(x, y), for all x, y ∈ X,(1.1)

where 0 < α < 1 is a constant. Then T has a unique fixed point in X , say x∗, and the Picard
iteration {Tnx0} converges to x∗ for all x0 ∈ X (that is, T is a Picard operator, see [44]).

The Banach fixed point theorem is one of the most useful researches in nonlinear anal-
ysis, and has many applications in solving nonlinear functional equations, optimization
problems, variational inequalities etc., by transforming them into a fixed point problem.
However, under this form it has at least two drawbacks: first, the contraction condition
(1.1) compels T to be continuous and, secondly, the condition T (X) ⊂ X makes it not
applicable to most of the nonlinear problems where the relevant operator T is actually a
nonself operator.

Therefore, there are many important reasons for the study of the fixed points not only
for self mappings, but also to tackle a great and challenging research topic to obtain fixed
point theorems for nonself mappings.
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In 1972, Assad and Kirk [5] extended Banach contraction mapping principle to nonself
multi-valued contraction mappings T : K → P (X) in the case (X, d) is a convex metric
space in the sense of Menger and K is a nonempty closed subset of X such that T maps
∂K (the boundary of K) into K. Later, there are many researches devoted to nonself
mappings, see [22, 32, 33, 41, 44].

Moreover, in 2004, Berinde [15], introduced a new class of self mappings (usually called
weak contractions, almost contractions or Berinde operators) that satisfy a simple but
more general contraction condition. In 2010, Berinde [18] studied about approximating
common fixed points of noncommuting self almost contractions in metric spaces. Next, in
2013, Berinde and Păcurar [24] introduced fixed point theorems for nonself single-valued
almost contractions. Later, in 2019, Berinde, Sridarat and Suantai [27] were interested in
establishing coincidence point theorems and common fixed point theorems for nonself
single-valued almost contractions, to extended the previous results in [18] and [24].

On the other hand, a very interesting idea came out by Jachymski [39], in 2008, who
combined the concepts of fixed point theory and graph theory to study fixed point theo-
rems in a metric space endowed with a directed graph. Jachymski introduced the concept
of G-contraction and thus obtained a generalization of Banach’s contraction principle.

Subsequently, there appeared many results on the fixed point theory in metric spaces
endowed with a directed graph, which extended many researches in this area, see [3,
8, 9, 12, 25, 30, 47, 48, 49]. Next, in 2016, Tiammee, Cho and Suantai [50] studied fixed
point theorems for nonself G-almost contractive mappings in Banach spaces endowed
with graphs.

Inspired by these researches, especially the ones in [27] and [50], the aim of this work
is to prove the existence of coincidence points and common fixed points of a nonself G-
almost contraction in Banach spaces endowed with graphs.

Our theorems and corollaries extend the outputs of [24] and [27] and generalize many
known theorems in this field. Furthermore, we also display some examples to confirm
our main results.

2. PRELIMINARIES

In this section, we give some fundamental and beneficial definitions and state some
known results that are useful for the proofs of the main theorems in this research.

Let G = (V (G), E(G)) be a directed 1-graph, where V (G) is a set of vertices of the
graph and E(G) is the set of its edges. We denote by G−1 the directed graph obtained
from G by reversing the direction of edges, that is,

E(G−1) = {(x, y) : (y, x) ∈ E(G)}.

If x and y are vertices in G, then a path in G from x to y of length n ∈ N ∪ {0} is a
sequence {xi}ni=0 of n + 1 vertices such that x0 = x, xn = y, (xi−1, xi) ∈ E(G) for each
i = 1, 2, ..., n. A closed directed path of length N > 1 from x to y, that is x = y, is called a
directed cycle. A directed graph without directed cycles is called a directed acyclic graph. A
directed graph G is symmetric if, whenever (x, y) ∈ E(G), then (y, x) ∈ E(G).

Definition 2.1 ([39]). Let (X, d) be a metric space and G = (V (G), E(G)) be a directed graph
such that V (G) = X and E(G) contains all loops, i.e., ∆ = {(x, x) : x ∈ X} ⊆ E(G). A
mapping f : X → X is said to be G-contractive if f is edge-preserving, i.e.,

x, y ∈ X, (x, y) ∈ E(G) =⇒ (f(x), f(y)) ∈ E(G)

and there exists α ∈ [0, 1) such that, for all x, y ∈ X ,

(x, y) ∈ E(G) =⇒ d(f(x), f(y)) ≤ αd(x, y).
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Property (A). ([12]). For any sequence {xn}n∈N, if xn → x and (xn, xn+1) ∈ E(G) for all
n ∈ N, then (xn, x) ∈ E(G) for each n ∈ N.

In order to obtain our main outputs, we use the following definition of domination in
graphs ([11, 42]).

Let G = (V (G), E(G)) be a directed graph. A set X ⊆ V (G) is called a dominating set
if, for any v ∈ V (G) \ X , there exists x ∈ X such that (x, v) ∈ E(G) and we call that
x dominates v or v is dominated by x. For all v ∈ V , a set X ⊆ V is dominated by v if
(v, x) ∈ E(G) for each x ∈ X and we say that X dominates v if (x, v) ∈ E(G) for each
x ∈ X .

A graph G is said to be transitive if for every x, y, z ∈ V (G) such that (x, y) and (y, z)
are in E(G), then (x, z) ∈ E(G).

Next, we give some definitions about coincidence points and weakly compatible map-
pings and present a useful proposition.

Definition 2.2 ([27]). Let X be a metric space, K a nonempty closed subset of X and let T, S :
K → X be two nonself mappings. If there exists x ∈ K such that Tx = Sx, then x is called a
coincidence point of T and S, and y = Tx = Sx is called a point of coincidence of T and S. If
Tx = Sx = x, then x is called a common fixed point of T and S.

Definition 2.3 ([27]). Let X be a metric space, K a nonempty closed subset of X and let T, S :
K → X be two nonself mappings. The pair of mappings T and S is said to be weakly compatible
if they commute at their coincidence points.

Proposition 2.1 ([27]). Let X be a metric space, K a nonempty closed subset of X and let T and
S : K → X be weakly compatible nonself mappings. If T and S have a unique point of coincidence
y ∈ K, then y is the unique common fixed point of T and S.

Let X be a Banach space, K a nonempty closed subset of X and T, S : K → X two
nonself mappings. Let S(K) be a closed subset of X . Let XST = {x ∈ K | Tx /∈ S(K)}.
For x ∈ XST , we assume that one can always to choose y ∈ ∂(S(K)) such that

y = (1− λ)Sx+ λTx, (0 < λ < 1)(2.2)

and denote by Yx the set of all points y ∈ ∂(S(K)) satisfying (2.2). We see that

∥ Sx− Tx ∥=∥ Sx− y ∥ + ∥ y − Tx ∥ .

In general, the set Yx of points satisfying condition (2.2) may contain more than one
element. In this situation we will need the following property.

Definition 2.4 ([27]). Let X be a Banach space, K a nonempty closed subset of X and T, S : K →
X two nonself mappings. Let S(K) be a closed subset of X . Let XST = {x ∈ K | Tx /∈ S(K)}.
For x ∈ XST , let y ∈ ∂(S(K)) be the corresponding elements given by (2.2). If, for any x ∈ XST ,
the inequality

∥ Sy′ − Ty′ ∥ ≤ ∥ Sx− Tx ∥(2.3)

is satisfied for at least one point y ∈ Yx, where y = Sy′, with y′ ∈ K, then we say that the pair
(T, S) has property (M ′).

Definition 2.5 ([50]). Let K be a nonempty subset of a normed space X and G = (V (G), E(G))
be a directed graph such that V (G) = K.

(1) A mapping T : K → X is said to be G-almost contraction if there exist δ ∈ (0, 1) and
L ≥ 0 with δ(1 + L) < 1 such that, for all x, y ∈ K,

∥ Tx− Ty ∥ ≤ δ ∥ x− y ∥ +L ∥ y − Tx ∥
whenever (x, y) ∈ E(G);
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(2) A mapping T : K → X is said to be G-contraction if there exists k ∈ (0, 1) such that, for
all x, y ∈ K,

∥ Tx− Ty ∥ ≤ k ∥ x− y ∥
whenever (x, y) ∈ E(G).

3. MAIN RESULT

In this section, we prove the existence of coincidence points and common fixed points
of two nonself G-almost contractions T and S.

Theorem 3.2. Let X be a Banach space, K a nonempty closed subset of X and G = (V (G), E(G))
a directed graph such that transitive. Let T, S : K → X be two nonself mappings for which there
exist two constants δ ∈ (0, 1) and L ≥ 0 such that, for any x, y ∈ K,

∥ Tx− Ty ∥ ≤ δ· ∥ Sx− Sy ∥ +L ∥ Sy − Tx ∥, for all (x, y) ∈ E(G).(3.4)

Assume that V (G) = K ∪ T (K) ∪ S(K), T is edge-preserving, S satisfies the condition:

for all x, y ∈ K, (Sx, Sy) ∈ E(G) =⇒ (x, y) ∈ E(G),(3.5)

S(K) is closed and has property (A), the pair (T, S) has property (M ′) and satisfies the condition:
for any x ∈ K,

if Sx ∈ ∂(S(K)), then Tx ∈ S(K).(3.6)

Suppose also that Yx is dominated by Sx and Yx dominates Tx for every x ∈ XST . If there exists
y ∈ ∂(S(K)) such that y = Sx0 for some x0 ∈ K and (Sx0, Tx0) ∈ E(G), then T and S have a
point of coincidence in X .

Proof. Assume that y ∈ ∂(S(K)) such that y = Sx0 for some x0 ∈ K and (Sx0, Tx0) ∈
E(G). By (3.6) we have Tx0 ∈ S(K). Thus there exists x1 ∈ K such that Sx1 = Tx0. So
(Sx0, Sx1) ∈ E(G). We have (x0, x1) ∈ E(G) and hence (Tx0, Tx1) ∈ E(G).

Next, if Tx1 ∈ S(K), then there is x2 ∈ K such that Sx2 = Tx1. We obtain (Sx1, Sx2) =
(Tx0, Tx1) ∈ E(G). Thus (x1, x2) ∈ E(G).

If Tx1 /∈ S(K), by property (M ′) we can choose y1 ∈ Yx1 such that y1 ∈ ∂(S(K)),
y1 = Sx2 for some x2 ∈ K which satisfies

∥ Sx2 − Tx2 ∥ ≤ ∥ Sx1 − Tx1 ∥
and

y1 = Sx2 = (1− λ1)Sx1 + λ1Tx1, for some λ1 ∈ (0, 1).

Note that Sx2 ̸= Tx1. Since Yx1
is dominated by Sx1, we have (Sx1, Sx2) = (Sx1, y1) ∈

E(G). So (x1, x2) ∈ E(G). Continuing in this manner, we get a sequence {Sxn} such that
(i) Sxn = Txn−1, if Txn−1 ∈ S(K);
(ii) Sxn = (1−λn−1)Sxn−1+λn−1Txn−1 ∈ ∂(S(K)) (0 < λn−1 < 1), if Txn−1 /∈ S(K).
Let us denote

P = {Sxk ∈ {Sxn} | Sxk = Txk−1}
and

Q = {Sxk ∈ {Sxn} | Sxk ̸= Txk−1}.
We see that {Sxn} ⊂ S(K) and that, if Sxk ∈ Q, then both Sxk−1 and Sxk+1 belong to the
set P . Moreover, by virtue of (3.6), we cannot have two consecutive terms of {Sxn} in the
set Q (but we can have two consecutive terms of {Sxn} in the set P ).

We claim that {Sxn} is a Cauchy sequence. To prove this, we have to discuss the fol-
lowing three distinct cases:
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• Case I. Sxn, Sxn+1 ∈ P ;
• Case II. Sxn ∈ P, Sxn+1 ∈ Q;
• Case III. Sxn ∈ Q, Sxn+1 ∈ P .

We see that (Sxn, Sxn+1) ∈ E(G) and (xn, xn+1) ∈ E(G) when n ∈ N for Case I and
Case II.

Now, we consider Case III. Sxn ∈ Q, Sxn+1 ∈ P .
Since Sxn ∈ Q, Sxn ̸= Txn−1 and Txn−1 /∈ S(K). Thus Sxn ∈ ∂(S(K)) and Sxn ∈

Yxn−1
. Since Yxn−1

is dominated by Sxn−1, (Sxn−1, Sxn) ∈ E(G).
Then (xn−1, xn) ∈ E(G). Therefore (Txn−1, Txn) ∈ E(G). We get (Sxn, Txn−1) ∈

E(G) because Yxn−1 dominates Txn−1.
From (Sxn, Txn−1) ∈ E(G), (Txn−1, Txn) ∈ E(G) and since G is transitive, (Sxn, Sxn+1) =

(Sxn, Txn) ∈ E(G). We obtain (xn, xn+1) ∈ E(G), too.
Therefore (Sxn, Sxn+1) ∈ E(G) and (xn, xn+1) ∈ E(G) for all n ∈ N.
Next, we prove that {Sxn} is a Cauchy sequence.
Case I. Sxn, Sxn+1 ∈ P .
In this case we get Sxn = Txn−1, Sxn+1 = Txn and by (3.4) we have

∥ Sxn − Sxn+1 ∥=∥ Txn−1 − Txn ∥ ≤ δ· ∥ Sxn−1 − Sxn ∥ +L ∥ Sxn − Txn−1 ∥
so,

∥ Sxn − Sxn+1 ∥ ≤ δ· ∥ Sxn−1 − Sxn ∥ .(3.7)

Case II. Sxn ∈ P, Sxn+1 ∈ Q.
In this case we get Sxn = Txn−1 but Sxn+1 ̸= Txn and

∥ Sxn − Sxn+1 ∥ + ∥ Sxn+1 − Txn ∥=∥ Sxn − Txn ∥ .

Then

∥ Sxn − Sxn+1 ∥ ≤ ∥ Sxn − Txn ∥=∥ Txn−1 − Txn ∥
and therefore by using (3.4) we have

∥ Sxn − Sxn+1 ∥ ≤ ∥ Txn−1 − Txn ∥ ≤ δ· ∥ Sxn−1 − Sxn ∥ +L ∥ Sxn − Txn−1 ∥
= δ· ∥ Sxn−1 − Sxn ∥,

which satisfies again inequality (3.7).
Case III. Sxn ∈ Q, Sxn+1 ∈ P .
In this case, we obtain Sxn−1 ∈ P . Since the pair (T, S) has property (M ′), it follows

that

∥ Sxn − Sxn+1 ∥=∥ Sxn − Txn ∥ ≤ ∥ Sxn−1 − Txn−1 ∥ .

Since Sxn−1 ∈ P , we have Sxn−1 = Txn−2 and by (3.4) we get

∥ Txn−2 − Txn−1 ∥ ≤ δ· ∥ Sxn−2 − Sxn−1 ∥ +L ∥ Sxn−1 − Txn−2 ∥
= δ· ∥ Sxn−2 − Sxn−1 ∥,

which yields that

∥ Sxn − Sxn+1 ∥ ≤ δ· ∥ Sxn−2 − Sxn−1 ∥ .(3.8)

From the above three cases, and (3.7) and (3.8), we have that the sequence {Sxn} satisfies
the inequality

∥ Sxn − Sxn+1 ∥ ≤ δ max{∥ Sxn−2 − Sxn−1 ∥, ∥ Sxn−1 − Sxn ∥},(3.9)

for any n ≥ 2. From (3.9), by induction, we obtain that

∥ Sxn − Sxn+1 ∥ ≤ δ[n/2] max{∥ Sx0 − Sx1 ∥, ∥ Sx1 − Sx2 ∥},
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for any n ≥ 2, where [n/2] denotes the greatest integer not exceeding n/2.
Furthermore, for m > n > N ,

∥ Sxn − Sxm ∥≤
∞∑

i=N

∥ Sxi − Sxi+1 ∥≤ 2
δ[N/2]

1− δ
·max{∥ Sx0 − Sx1 ∥, ∥ Sx1 − Sx2 ∥},

which shows that indeed {Sxn} is a Cauchy sequence.
Since {Sxn} ⊂ S(K) and S(K) is closed, {Sxn} converges to some point x∗ in S(K).
Let {Sxnk

} ⊂ P be an infinite subsequence of {Sxn} (such a subsequence always ex-
ists). Since x∗ ∈ S(K), there exists a p ∈ K such that x∗ = Sp. Since S(K) has property
(A), (Sxn, Sp) = (Sxn, x

∗) ∈ E(G), for all n ∈ N. So (xn, p) ∈ E(G) for all n ∈ N.
Therefore we have

∥ Sp− Tp ∥ ≤ ∥ Sp− Sxnk+1 ∥ + ∥ Sxnk+1 − Tp ∥
= ∥ Sp− Sxnk+1 ∥ + ∥ Txnk

− Tp ∥
≤ ∥ Sp− Sxnk+1 ∥ +δ· ∥ Sxnk

− Sp ∥ +L ∥ Sp− Txnk
∥

= (1 + L) ∥ Sp− Sxnk+1 ∥ +δ· ∥ Sxnk
− Sp ∥,

from which we get

∥ Sp− Tp ∥ ≤ (1 + L) ∥ Sp− Sxnk+1 ∥ +δ· ∥ Sxnk
− Sp ∥,(3.10)

for all k ≥ 0. Taking k → ∞ in (3.10), we obtain

∥ Sp− Tp ∥= 0,

which shows that Sp = Tp, that is, p is a coincidence point of T and S and x∗ is a point of
coincidence of T and S. □

Theorem 3.3. Let X be a Banach space, K a nonempty closed subset of X and G = (V (G), E(G))
a directed graph such that transitive. Let T, S : K → X be two nonself mappings satisfying (3.4)
for which there exist two constants θ ∈ (0, 1) and L1 ≥ 0 such that, for any x, y ∈ K,

∥ Tx− Ty ∥ ≤ θ· ∥ Sx− Sy ∥ +L1 ∥ Sx− Tx ∥, for all (x, y) ∈ E(G).(3.11)

Assume that
(i) V (G) = K ∪ T (K) ∪ S(K);
(ii) T is edge-preserving;
(iii) S satisfies the condition (3.5);
(iv) S(K) is closed and has property (A);
(v) the pair (T, S) has property (M ′) and satisfies the condition (3.6).
Suppose also that Yx is dominated by Sx and Yx dominates Tx for every x ∈ XST .
If there exists y ∈ ∂(S(K)) such that y = Sx0 for some x0 ∈ K and (Sx0, Tx0) ∈ E(G),

(x∗, u∗) ∈ E(G) for each x∗, u∗ which is a point of coincidence of T and S, then T and S have a
unique point of coincidence in X .

Moreover, if T and S are weakly compatible and have a unique point of coincidence of T and S
is in K, then T and S have a unique common fixed point in K.

Proof. By Theorem 3.2, T and S have a point of coincidence, say x∗ = Tp = Sp, for some
p ∈ K. Now, let us show that T and S actually have a unique point of coincidence.

Assume that there exists q ∈ K such that Tq = Sq. Since Sq, Sp are the points of
coincidences of T and S, (Sq, Sp) ∈ E(G). So (q, p) ∈ E(G). Thus by (3.11) we get

∥ Sq − Sp ∥=∥ Tq − Tp ∥≤ θ ∥ Sq − Sp ∥ +L1 ∥ Sq − Tq ∥= θ ∥ Sq − Sp ∥,

that is, (1 − θ) ∥ Sq − Sp ∥≤ 0, which implies ∥ Sq − Sp ∥= 0, that is Sq = Sp = x∗.
Therefore T and S have a unique point of coincidence, x∗.
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Next, suppose that T and S are weakly compatible and x∗ ∈ K. By Proposition 2.1, we
have x∗ is a unique common fixed point of T and S. □

As a consequence of Theorem 3.2, by setting S = I , where I : K → X is the identity
mapping, we get the following:

Corollary 3.1. Let X be a Banach space, K a nonempty closed subset of X and G = (V (G), E(G))
a directed graph such that transitive. Let T : K → X be a nonself mapping for which there exist
two constants δ ∈ (0, 1) and L ≥ 0 such that, for any x, y ∈ K,

∥ Tx− Ty ∥ ≤ δ· ∥ x− y ∥ +L ∥ y − Tx ∥, for all (x, y) ∈ E(G).(3.12)

Assume that
(i) V (G) = K ∪ T (K);
(ii) T is edge-preserving;
(iii) K has property (A);
(iv) T has property (M) and satisfies Rothe’s boundary condition

T (∂K) ⊂ K.(3.13)

Suppose also that Yx is dominated by x and Yx dominates Tx for all x ∈ K with Tx /∈ K. If there
exists x0 ∈ ∂K such that (x0, Tx0) ∈ E(G), then T has a fixed point in K.

Remark 3.1. Property (M) ([24]) is a special case of property (M ′) when S = I , where I : K →
X is the identity mapping.

As a consequence of Theorem 3.3, by setting S = I , where I : K → X is the identity
mapping, we obtain the following:

Corollary 3.2. Let X be a Banach space, K a nonempty closed subset of X and G = (V (G), E(G))
a directed graph such that transitive. Let T : K → X be a nonself mapping satisfying (3.12) for
which there exist two constants θ ∈ (0, 1) and L1 ≥ 0 such that, for any x, y ∈ K,

∥ Tx− Ty ∥ ≤ θ· ∥ x− y ∥ +L1 ∥ x− Tx ∥, for all (x, y) ∈ E(G).(3.14)

Assume that
(i) V (G) = K ∪ T (K);
(ii) T is edge-preserving;
(iii) K has property (A);
(iv) T has property (M) and satisfies the condition (3.13);
Suppose also that Yx is dominated by x and Yx dominates Tx, for all x ∈ K with Tx /∈ K.
If there exists x0 ∈ ∂K such that (x0, Tx0) ∈ E(G), (q, p) ∈ E(G), for each q, p, which is a

fixed point of T , then T has a unique fixed point in K.

Remark 3.2. By putting E(G) = K ∪T (K)×K ∪T (K), from Corollary 3.1, we have Theorem
3.3 of [24] and from Corollary 3.2, we get Theorem 3.6 of [24].

Moreover, from Theorem 3.2 and Theorem 3.3, by putting E(G) = K ∪ T (K)∪ S(K)×
K ∪ T (K) ∪ S(K), we have Theorem 3 and Theorem 4 of [27], respectively.

We denote d(x, y) =∥ x− y ∥.

Corollary 3.3 ([27], Theorem 3). Let X be a Banach space, K a nonempty closed subset of X
and let T, S : K → X be two nonself mappings for which there exist two constants δ ∈ (0, 1) and
L ≥ 0 such that

d(Tx, Ty) ≤ δ · d(Sx, Sy) + Ld(Sy, Tx), for all x, y ∈ K.(3.15)

If S(K) is closed, the pair (T, S) has property (M ′) and satisfies the condition: for any x ∈ K,

if Sx ∈ ∂(S(K)), then Tx ∈ S(K),(3.16)
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then T and S have a point of coincidence in X .

Corollary 3.4 ([27], Theorem 4). Let X be a Banach space, K a nonempty closed subset of X
and let T, S : K → X be two nonself mappings satisfying (3.15) for which there exist a constant
θ ∈ (0, 1) and some L1 ≥ 0 such that

d(Tx, Ty) ≤ θd(Sx, Sy) + L1d(Sx, Tx), for all x, y ∈ K.(3.17)

If S(K) is closed and the pair (T, S) has property (M ′) and satisfies the condition (3.16), then T
and S have a unique point of coincidence in X .

Moreover, if T and S are weakly compatible and there is a unique point of coincidence of T and
S in K, then T and S have a unique common fixed point in K.

4. CONCLUSIONS

In this work, we obtain coincidence point theorems and common fixed point theorems
for nonself G-almost contractions in Banach spaces endowed with a directed graph and
give some examples to support the validity of our results.

Our main theorems and corollaries extend the results of [15], [24] and [27].
In addition, our theorems expand and generalize many known results in this area, as

for example those in [5], [8], [9], [15], [18], [36].
For other related developments in this area, we refer to [1], [2], [4], [6], [7], [13], [14],

[16], [17], [19], [20], [21], [23], [26], [28], [29], [31], [34], [35], [37], [38], [40], [43], [45], [46].
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