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Fixed point iterations for non-expansive maps and their
applications to constrained minimization and feasibility
problems in Hilbert spaces

HUDSON AKEWE 1 , BABATUNDE A. SAWYERR2, AND EBUNOLUWA P. FASINA3

ABSTRACT. The purpose of this paper is to introduce some fixed point iterative schemes and prove that they
converge faster than other iterations in the literature. This paper introduces three novel modified multistep
iterative schemes (A), (B) and (C). Fixed point theorems are proven with these newly introduced multistep
iterative schemes for the class of contraction mappings with fixed point p = Tp and non-expansive mappings
respectively. The rate of convergence was demonstrated numerically with the help of Python programs and
the results showed that our modified iterative scheme (C) converged in lesser number of iterations than existing
iterative schemes in the literature. With the help of well constructed theorems, these modified multistep iterative
schemes were applied to constrained minimization and split feasibility problems for the class of non-expansive
mappings in real Hilbert spaces.

1. INTRODUCTION AND PRELIMINARIES

Fixed point equations are related to a lot of physical problems in applied sciences and
related fields that can be written as functional equations. It is always of interest to con-
struct iterative schemes that can approximate the unique solution of the fixed point equa-
tions with lesser number of steps. Fixed point equations have vast applications in con-
strained minimization and split feasibility problems in Hilbert spaces. It is vital to employ
faster iterative schemes to obtain solution of nonlinear functions, especially those that can
be applied to real life situations like constrained minimization and split feasibility prob-
lems. Most of the papers from the present list of references presented in this work dealt
with fixed point problems in Hilbert, normed and metric spaces. Some very important
classes of fixed point results are the contractive-type ones. Several convergence, rate of
convergence, equivalence, data dependence theorems and optimization related problems
were stated and proved in framework of Hilbert and Banach spaces and a huge literature
is devoted to them, for details, see ([1], [2], [3] - [25], [26], [27], [28], [29], [30], [31], [32]).

The purpose of this paper is to introduce some fixed point iterative schemes and prove
that they converge faster than all of Thakur et al [31], Abbas and Nazir [1], Noor [16],
Agarwal et al [2]., Ishikawa [13], Khan [14], Mann [15] and Picard [27] iterations.

We present some related definitions and Lemmas to our work as follows:
Let H be a Hilbert space, T : H → H a nonlinear mapping. The set of fixed points of T
denoted by F (T ) is F (T ) = {x ∈ H : Tx = x}.
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Definition 1.1. [1] Let H be a real Hilbert space. A mapping T : H → H is said to be an
averaged mapping if and only if T can be written as the average of the identity and a nonexpansive
mapping, that is , T = (1 − α)I + αS, where α ∈ [0, 1] and S : H → H is a nonexpansive
mapping.

Definition 1.2. [1] Let H be a real Hilbert space and C be a nonempty, closed and convex subset
of H . A mapping T : C → C is said to be demi-closed at 0, if for any sequence {xn} ⊂ C which
converges weakly to x and limn→∞∥xn − Txn∥ = 0, then Tx = x.

Definition 1.3. [1] Let H be a real Hilbert space and C be a nonempty, closed and convex subset
of H . A mapping T : C → C is called:
(i) nonexpansive if ∥Tx− Ty∥ ≤ ∥x− y∥, ∀x, y ∈ C.
(ii) quasi nonexpansive if F (T ) ̸= ∅ and ∥Tx− x∗∥ ≤ ∥x− x∗∥, ∀x ∈ C, x∗ ∈ F (T ).

Definition 1.4. [1] Let H be a real Hilbert space and C be a nonempty, closed and convex subset
of H . Let T : C → H be a nonlinear operator, then T is called:
(i) a monotone operator if < Tx− Ty, x− y >≥ 0,∀x, y ∈ C.

(ii) a λ− strongly monotone operator if there exists λ > 0 such that

< Tx− Ty, x− y > ≥ λ∥x− y∥2, ∀x, y ∈ C.

(iii) β − ism (β− inverse strongly monotone) if there exists a constant β > 0 such that <
Tx− Ty, x− y >≥ β∥Tx− Ty∥2, ∀x, y ∈ C.
(iv) pseudo monotone if < Tx, y − x >≥ 0 ⇒< Ty, y − x >≥ 0, ∀x, y ∈ C.
(v) quasi-monotone if < Ty, x− y >> 0 ⇒< Tx, x− y >≥ 0, ∀x, y ∈ C.

In 1922, Stefan Banach employed contraction condition to obtain unique fixed point
in the celebrated Banach contraction principle which is remarkable in its simplicity, but
it is perhaps the most widely applied fixed point theorem in all of analysis with special
applications to the theory of differential and integral equations. Let X be a complete
metric space and T : X → X a self-map. T is called:
Banach contraction mapping if there exists δ, satisfying δ ∈ [0, 1) such that

d(Tx, Ty) ≤ δd(x, y), ∀x, y ∈ X.(1.1)

In the framework of Banach space, we have the following definitions: Let E be a Banach
space and T : E → E a self-map. T is called an L−Lipschitzian mapping if there exists a
constant L ≥ 0 such that

∥Tx− Ty∥ ≤ L∥x− y∥, ∀x, y ∈ E.(1.2)

T is called a Banach contraction mapping if there exists L = δ, satisfying δ ∈ [0, 1) such
that, (1.1) becomes

∥Tx− Ty∥ ≤ δ∥x− y∥, ∀x, y ∈ E.(1.3)

T is called a nonexpansive mapping if there exists L = δ = 1, in which case, (1.3) becomes

∥Tx− Ty∥ ≤ ∥x− y∥, ∀x, y ∈ E.(1.4)

T is called Zamfirescu mapping if there exists δ ∈ [0, 1) such that

∥Tx− Ty∥ ≤ δ∥x− y∥+ 2δ∥x− Tx∥, ∀x, y ∈ E.(1.5)

In 1972, Zamfirescu [32], generalize the Banach fixed point theorem using the following
contractive condition (1.3).

T is called Osilike mapping if there exists δ ∈ [0, 1) and L ≥ 0 such that

∥Tx− Ty∥ ≤ δ∥x− y∥+ L∥x− Tx∥, ∀x, y ∈ E.(1.6)
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Osilike [23] proved several stability results using contractive definition (1.6).

T is called contractive-like mapping if there exists δ ∈ [0, 1) and a monotone increasing
function φ : R+ → R+ with φ(0) = 0 such that

∥Tx− Ty∥ ≤ δ∥x− y∥+ φ(∥x− Tx∥), ∀x, y ∈ E.(1.7)

Let FT denote the set of all fixed point of T. That is, FT = {p : p = Tp}.
In 2003, Imoru and Olatinwo [12] proved some stability results using the general contrac-
tive definition (1.5).

Bosede and Rhoades [9] made the following assumption to obtain a general class of
mapping and proved fixed point theorem for Picard and Mann iterations. That is, if x = p
(is a fixed point) and δ ∈ [0, 1) then, (1.3), (1.5), (1.6) and (1.7) becomes

∥p− Ty∥ ≤ δ∥p− y∥, ∀x, y ∈ E.(1.8)

Chidume and Olaleru [10] gave examples to show that the class of mappings satisfying
(1.8) is more general than that of (1.3), (1.5), (1.6) and (1.7) provided the fixed point ex-
ists. The authors [10] also proved that every contraction map with a fixed point satisfies
inequality (1.8) in the following example:

Example 1.1. Let E = l∞, B := {x ∈ l∞ : ∥x∥ ≤ 1} and let T : E → B ⊆ E be defined by
Tx = 11

12 (0, x
2
1, x

2
2, x

2
3, ...), if ∥x∥∞ ≤ 1,

Tx = 11
12∥x∥2

∞
(0, x2

1, x
2
2, x

2
3, ...), if ∥x∥∞ > 1,for x0 = (x1, x2, x3, ...) ∈ l∞.

Then Tp = p, if and only if p = 0.
We compute as follows:
∥Tx− p∥∞ = 11

12∥(0, x
2
1, x

2
2, x

2
3, ...)∥∞, if ∥x∥∞ ≤ 1,

∥Tx− p∥∞ = 11
12∥x∥2

∞
∥(0, x2

1, x
2
2, x

2
3, ...)∥∞, if ∥x∥∞ > 1, so that

∥Tx− p∥∞ = 11
12∥x∥

2
∞ ≤ 11

12∥x∥∞, if ∥x∥∞ ≤ 1,

∥Tx− p∥∞ = 11
12 .1, if ∥x∥∞ > 1. Hence, we obtain that

∥Tx− p∥∞ = 11
12∥x− p∥∞, for every x ∈ l∞, p = 0.

Thus, T satisfies contractive condition (1.6). But the map T is not a contraction. To see this, take
x = ( 34 ,

3
4 ,

3
4 , ...); y = ( 12 ,

1
2 ,

1
2 , ...). Then,

∥x− y∥∞ = 1
4 ; ∥Tx− Ty∥∞ = 11

12∥(0,
5
16 ,

5
16 , ...)∥∞ = 55

192 .
Suppose there exists δ ∈ [0, 1) such that ∥Tx− Ty∥∞ ≤ δ∥x− y∥∞ for every x, y ∈ E, then we
must have 55

192 ≤ δ
4 which yields that δ ≥ 220

192 > 1, a contradiction. So, T is not a contraction
map.

Let E be a Banach space, C a closed convex subset of E and T : C → C a selfmap of C.
Then,
the Picard [27] iterative scheme {xn}∞n=1 ⊂ C is defined by:

x1 ∈ C,(1.9)
xn+1 = Txn, n = 1, 2, ...,

the Mann [15] iterative scheme {xn}∞n=1 ⊂ C is defined by:
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x1 ∈ C,(1.10)

xn+1 = (1− αn)xn + αnTxn, n = 1, 2, ...,

where the sequence {αn}∞n=1 ⊂ (0, 1).

the Picard-Mann hybrid [14] iterative scheme {xn}∞n=1 ⊂ C is defined by:

x1 ∈ C,(1.11)
xn+1 = Tyn,

yn = (1− αn)xn + αnTxn, n = 1, 2, ...,

where the sequence {αn}∞n=1 ⊂ (0, 1).

the Ishikawa [13] iterative scheme {xn}∞n=1 ⊂ C is defined by:

x1 ∈ C,(1.12)

xn+1 = (1− αn)xn + αnTyn,

yn = (1− β1
n)xn + β1

nTxn, n = 1, 2, ...,

where the sequences {αn}∞n=1, {β1
n}∞n=1 ⊂ (0, 1).

the Agarwal et al. [2] iterative scheme {xn}∞n=1 ⊂ C is defined by:

x1 ∈ C,(1.13)

xn+1 = (1− αn)Txn + αnTyn,

yn = (1− β1
n)xn + β1

nTxn, n = 1, 2, ...,

where the sequences {αn}∞n=1, {β1
n}∞n=1 ⊂ (0, 1).

the Noor [16] iterative scheme {xn}∞n=1 ⊂ C is defined by:

x1 ∈ C,(1.14)

xn+1 = (1− αn)xn + αnTyn,

yn = (1− β1
n)xn + β1

nTzn,

zn = (1− β2
n)xn + β2

nTxn, n = 1, 2, . . . ,

where the sequences {αn}∞n=1, {β1
n}∞n=1, {β2

n}∞n=1 ⊂ (0, 1).

the Abbas and Nazir [1] iterative scheme {xn}∞n=1 ⊂ C is defined by:
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x1 ∈ C,(1.15)

xn+1 = (1− αn)Tyn + αnTzn,

yn = (1− β1
n)Txn + β1

nTzn,

zn = (1− β2
n)xn + β2

nTxn, n = 1, 2, . . . ,

where the sequences {αn}∞n=1, {β1
n}∞n=1, {β2

n}∞n=1 ⊂ (0, 1).

the Thakur et al. [31] iterative scheme {xn}∞n=1 ⊂ C is defined by:

x1 ∈ C,(1.16)

xn+1 = (1− αn)Txn + αnTyn,

yn = (1− β1
n)zn + β1

nTzn,

zn = (1− β2
n)xn + β2

nTxn, n = 1, 2, . . . ,

where the sequences {αn}∞n=1, {β1
n}∞n=1, {β2

n}∞n=1 ⊂ (0, 1).

The following Lemmas will be needed in proving the main results.

Lemma 1.1. Let δ be a real number satisfying 0 ≤ δ < 1 and {ϵn}∞n=0 a sequence of positive
numbers such that limn→∞ϵn = 0, then for any sequence of positive numbers {un}∞n=0 satisfying
un+1 ≤ δun + ϵn, n=0,1,2,..., we have limn→∞un = 0.

Lemma 1.2. Suppose that E is a uniformly convex Banach space and 0 < q ≤ tn ≤ p < 1
∀ n ∈ N . Let {xn}∞n=1 and {yn}∞n=1 be two sequences of E such that limsupn→∞∥xn∥ ≤ r,
limsupn→∞∥yn∥ ≤ r and limn→∞∥tnxn + (1 − tn)yn∥ = r hold for some r ≥ 0. Then
limn→∞∥xn − un∥ = 0.

Lemma 1.3. Let E be a uniformly convex Banach space and let C be a non-empty closed convex
subset of E. Let T be a nonexpansive mapping of C into itself. Then I − T is demiclosed with
respect to zero.

2. MAIN RESULTS 1

2.1. Convergence Results For a General Class of Map in Banach Spaces. In this sec-
tion, we introduce three types of modified multistep iterative schemes and prove strong
convergence fixed point result for a general class of map.

Let E be a Banach space, C a closed convex subset of E and T : C → C a self-map of
C. Then,
the modified multistep iterative scheme (A) {xn}∞n=1 ⊂ C is defined by:

x1 ∈ C,(2.17)

xn+1 = (1− αn)Txn + αnTy
1
n,

yin = (1− βi
n)xn + βi

nTy
i+1
n , i = 1, 2, . . . , k − 2,

yk−1
n = (1− βk−1

n )xn + βk−1
n Txn, k = 2, 3, . . . , n = 1, 2, . . . ,

where the sequences {αn}∞n=1, {βi
n}∞n=1 ⊂ (0, 1), for (i = 1, 2, ..., k − 1).
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The modified multistep iterative scheme (B) {xn}∞n=1 ⊂ C is defined by:

x1 ∈ C,(2.18)

xn+1 = (1− αn)Txn + αnTy
1
n,

yin = (1− βi
n)y

i+1
n + βi

nTy
i+1
n , i = 1, 2, . . . , k − 2,

yk−1
n = (1− βk−1

n )xn + βk−1
n Txn, k = 2, 3, . . . , n = 1, 2, . . . ,

where the sequences {αn}∞n=1, {βi
n}∞n=1 ⊂ (0, 1), for (i = 1, 2, ..., k − 1).

The modified multistep iterative scheme (C) {xn}∞n=1 ⊂ C is defined by:

x1 ∈ C,(2.19)

xn+1 = (1− αn)Ty
1
n + αnTy

1
n,

yin = (1− βi
n)y

i+1
n + βi

nTy
i+1
n , i = 1, 2, . . . , k − 2,

yk−1
n = (1− βk−1

n )xn + βk−1
n Txn, k = 2, 3, . . . , n = 1, 2, . . . ,

where the sequences {αn}∞n=1, {βi
n}∞n=1 ⊂ (0, 1), for (i = 1, 2, ..., k − 1).

We will now prove our main results using iterative schemes (2.17), (2.18) and (2.19) as
follows:

Theorem 2.1. Let E be a Banach space, C a closed convex subset of E and T : C → C a selfmap
of C with a fixed point p satisfying the condition

∥p− Ty∥ ≤ δ∥p− y∥, ∀x, y ∈ C,(2.20)

for some δ ∈ [0, 1). For x1 ∈ C, let {xn}∞n=1 be the modified multistep iterative scheme (A)
defined by (2.17), where the sequences {αn}∞n=1, {βi

n}∞n=1 ⊂ (0, 1), for (i = 1, 2, ..., k − 1). Then
{xn}∞n=1 (2.17) converges strongly to the unique fixed point p of T .

Proof. In view of (2.17) and (2.20), we have

∥xn+1 − p∥ = ∥(1− αn)Txn + αnTy
1
n − p∥(2.21)

≤ (1− αn)∥Txn − p∥+ αn∥Ty1n − p∥
≤ δ(1− αn)∥xn − p∥+ δαn∥y1n − p∥.

∥y1n − p∥ ≤ (1− β1
n)∥xn − p∥+ β1

n∥Ty2n − p∥(2.22)
≤ (1− β1

n)∥xn − p∥+ δβ1
n∥y2n − p∥

≤ (1− β1
n)∥xn − p∥+ δβ1

n[(1− β2
n)∥xn − p∥+ δβ2

n∥y3n − p∥]
= [(1− β1

n) + δβ1
n(1− β2

n)]∥xn − p∥+ δ2β1
nβ

2
n∥y3n − p∥.

∥y3n − p∥ ≤ (1− β3
n)∥xn − p∥+ δβ3

n∥y4n − p∥.(2.23)

...

∥yk−2
n − p∥ ≤ (1− βk−2

n )∥xn − p∥+ δβk−2
n ∥yk−1

n − p∥.(2.24)

∥yk−1
n − p∥ ≤ (1− βk−1

n )∥xn − p∥+ δβk−1
n ∥xn − p∥(2.25)

= [1− βk−1
n + δβk−1

n ]∥xn − p∥.

Substituting (2.22) to (2.25) in (2.21) and simplifying, we have
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∥xn+1 − p∥ ≤ δ[1− (1− δk−1)]αnβ
1
nβ

2
nβ

3
n . . . β

k−2
n βk−1

n ∥xn − p∥(2.26)

≤
n∏

m=1

δ[1− (1− δk−1)]αmβ1
mβ2

mβ3
m . . . βk−2

m βk−1
m ∥x1 − p∥.

Applying the conditions 0 ≤ δ < 1, αn, β
i
n ∈ (0, 1) for i = 1, 2, 3, ..., k − 1 in (2.26), it

result that limn→∞ ∥xn+1 − p∥ = 0. □

Theorem 2.2. Let E be a Banach space, C a closed convex subset of E and T : C → C a selfmap
of C with a fixed point p satisfying the condition

∥p− Ty∥ ≤ δ∥p− y∥, ∀x, y ∈ C,(2.27)

for some δ ∈ [0, 1). For x1 ∈ C, let {xn}∞n=1 be the modified multistep iterative scheme (B)
defined by (2.18), where the sequences {αn}∞n=1, {βi

n}∞n=1 ⊂ (0, 1), for (i = 1, 2, ..., k − 1). Then
{xn}∞n=1 (2.18) converges strongly to the fixed point p of T .

Proof. In view of (2.18) and (2.27), we have

∥xn+1 − p∥ = ∥(1− αn)Txn + αnTy
1
n − p∥(2.28)

≤ (1− αn)∥Txn − p∥+ αn∥Ty1n − p∥
≤ δ(1− αn)∥xn − p∥+ δαn∥y1n − p∥.

∥y1n − p∥ ≤ (1− β1
n)∥y2n − p∥+ β1

n∥Ty2n − p∥(2.29)
= [1− β1

n + δβ1
n]∥y2n − p∥.

∥y2n − p∥ ≤ [1− β2
n + δβ2

n]∥y3n − p∥.(2.30)

∥y3n − p∥ ≤ [1− β3
n + δβ3

n]∥y4n − p∥.(2.31)
...

∥yk−2
n − p∥ ≤ [1− βk−2

n + δβk−2
n ]∥yk−1

n − p∥.(2.32)

∥yk−1
n − p∥ ≤ (1− βk−1

n )∥xn − p∥+ δβk−1
n ∥xn − p∥(2.33)

= [1− βk−1
n + δβk−1

n ]∥xn − p∥.
Substituting (2.29) to (2.33) in (2.28) and simplifying, we have

∥xn+1 − p∥ ≤ δ[1− αn + αn[(1− (1− δ)β1
n)(1− (1− δ)β2

n)(2.34)

(1− (1− δ)β3
n) . . . (1− (1− δ)βk−2

n )

(1− (1− δ)βk−1
n )]]∥xn − p∥

≤
n∏

m=1

δ[1− αm + αm[(1− (1− δ)β1
m)(1− (1− δ)β2

m)

(1− (1− δ)β3
m) . . . (1− (1− δ)βk−2

m )

(1− (1− δ)βk−1
m )]]∥x1 − p∥.

Applying the conditions 0 ≤ δ < 1, αn, β
i
n ∈ (0, 1) for i = 1, 2, 3, ..., k− 1 in (2.34), it result

that limn→∞ ∥xn+1 − p∥ = 0.
That is, {xn}∞n=1 in (2.18) converges strongly to the unique fixed point p of T . □
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Theorem 2.3. Let E be a Banach space, C a closed convex subset of E and T : C → C a self-map
of C with a fixed point p satisfying the condition

∥p− Ty∥ ≤ δ∥p− y∥, ∀x, y ∈ C,(2.35)

for some δ ∈ [0, 1). For x1 ∈ C, let {xn}∞n=1 be the modified multistep iterative scheme (C)
defined by (2.19), where the sequences {αn}∞n=1, {βi

n}∞n=1 ⊂ (0, 1), for (i = 1, 2, ..., k − 1). Then
{xn}∞n=1 (2.19) converges strongly to the fixed point p of T

Proof. In view of (2.19) and (2.35), we have

∥xn+1 − p∥ = ∥(1− αn)Ty
1
n + αnTy

1
n − p∥(2.36)

≤ (1− αn)∥Ty1n − p∥+ αn∥Ty1n − p∥
≤ δ(1− αn)∥y1n − p∥+ δαn∥y1n − p∥
= δ∥y1n − p∥.

∥y1n − p∥ ≤ (1− β1
n)∥y2−p∥+ β1

n∥Ty2n − p∥(2.37)

= [1− β1
n + δβ1

n]∥y2n − p∥.

∥y2n − p∥ ≤ [1− β2
n + δβ2

n]∥y3n − p∥.(2.38)

∥y3n − p∥ ≤ [1− β3
n + δβ3

n]∥y4n − p∥.(2.39)

...

∥yk−2
n − p∥ ≤ [1− βk−2

n + δβk−2
n ]∥yk−1

n − p∥.(2.40)

∥yk−1
n − p∥ ≤ (1− βk−1

n )∥xn − p∥+ δβk−1
n ∥xn − p∥(2.41)

= [1− βk−1
n + δβk−1

n ]∥xn − p∥.
Substituting (2.37) to (2.41) in (2.36) and simplifying, we have

∥xn+1 − p∥ ≤ δ[1− (1− δ)δk−2)]β1
nβ

2
nβ

3
n . . . β

k−2
n βk−1

n ∥xn − p∥(2.42)

≤
n∏

m=1

δ[1− (1− δ)δk−2]β1
mβ2

mβ3
m . . . βk−2

m βk−1
m ∥x1 − p∥.

Applying the conditions 0 ≤ δ < 1, βi
n ∈ (0, 1) for i = 1, 2, 3, ..., k − 1 in (2.42), it result

that limn→∞ ∥xn+1 − p∥ = 0.

That is, {xn}∞n=1 in (2.19) converges strongly to the unique fixed point p of T . □

Theorem 2.4. Let E be a Banach space, C a closed convex subset of E and T : C → C a self-
map of C with a fixed point p satisfying the contractive condition (1.8) for some δ ∈ [0, 1). For
x1 ∈ C, let {xn}∞n=1 be the Thakur et al. iterative scheme defined by (1.16), where the sequences
{αn}∞n=1, {βn}∞n=1{γn}∞n=1 ⊂ (0, 1). Then {xn}∞n=1 (1.16) converges strongly to the unique
fixed point p of T .

Proof. The method of proof of Theorem 2.4 is similar to that of Theorem 2.3. The final
result is

∥xn+1 − p∥ ≤ δ[1− (1− δ2)]αnβnγn∥xn − p∥(2.43)

≤
n∏

m=1

δ[1− (1− δ2)]αmβmγm∥x1 − p∥.
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Applying the conditions 0 ≤ δ < 1, αnβnγn ∈ (0, 1) in (2.43), it result that limn→∞ ∥xn+1−
p∥ = 0.
That is, {xn}∞n=1 in (1.16) converges strongly to the unique fixed point p of T . □

Theorem 2.5. Let E be a Banach space, C a closed convex subset of E and T : C → C a self-
map of C with a fixed point p satisfying the contractive condition (1.8) for some δ ∈ [0, 1). For
x1 ∈ C, let {xn}∞n=1 be the Abbas et al. iterative scheme defined by (1.15), where the sequences
{αn}∞n=1, {βn}∞n=1{γn}∞n=1 ⊂ (0, 1). Then {xn}∞n=1 (1.15) converges strongly to the unique
fixed point p of T .

Proof. The method of proof of Theorem 2.5 is similar to that of Theorem 2.3. The final
result is

∥xn+1 − p∥ ≤ δ[1− (1− δ)]αnβnγn∥xn − p∥(2.44)

≤
n∏

m=1

δ[1− (1− δ)]αmβmγm∥x1 − p∥.

Applying the conditions 0 ≤ δ < 1, αn, βn, γn ∈ (0, 1) in (2.44), it result that limn→∞ ∥xn+1−
p∥ = 0.
That is, {xn}∞n=1 in (1.15) converges strongly to the unique fixed point p of T . □

Theorem 2.6. Let E be a Banach space, C a closed convex subset of E and T : C → C a
self-map of C with a fixed point p satisfying the contractive condition (1.8) for some δ ∈ [0, 1).
For x1 ∈ C, let {xn}∞n=1 be the Noor iterative scheme defined by (1.14), where the sequences
{αn}∞n=1, {βn}∞n=1{γn}∞n=1 ⊂ (0, 1). Then {xn}∞n=1 (1.14) converges strongly to the unique
fixed point p of T .

Proof. The method of proof of Theorem 2.6 is similar to that of Theorem 2.1. The final
result is

∥xn+1 − p∥ ≤ [1− (1− δ)αn − (1− δ)δαnβn − (1− δ)δ2αnβnγn]∥xn − p∥(2.45)
≤ [1− (1− δ)δ2αnβnγn]∥xn − p∥

≤
n∏

m=1

[1− (1− δ)δ2αmβmγm]∥x1 − p∥.

Applying the conditions 0 ≤ δ < 1, αn, βn, γn ∈ (0, 1) in (2.45), it result that limn→∞ ∥xn+1−
p∥ = 0.
That is, {xn}∞n=1 in (1.14) converges strongly to the unique fixed point p of T . □

Theorem 2.7. Let E be a Banach space, C a closed convex subset of E and T : C → C a of
C with a fixed point p satisfying the contractive condition (1.8) for some δ ∈ [0, 1). For x1 ∈
C, let {xn}∞n=1 be the Agarwal et al. iterative scheme defined by (1.13), where the sequences
{αn}∞n=1, {βn}∞n=1 ⊂ (0, 1). Then {xn}∞n=1 (1.13) converges strongly to the unique fixed point p
of T

Proof. The method of proof of Theorem 2.7 is similar to that of Theorem 2.2. The final
result is

∥xn+1 − p∥ ≤ δ[1− (1− δ)αnβn]∥xn − p∥(2.46)

≤
n∏

m=1

δ[1− (1− δ)αmβm]∥x1 − p∥.

Applying the conditions 0 ≤ δ < 1, αn, βn ∈ (0, 1) in (2.46), it result that limn→∞ ∥xn+1 −
p∥ = 0.
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That is, {xn}∞n=1 in (1.13) converges strongly to the unique fixed point p of T . This ends
the proof. □

Theorem 2.8. Let E be a Banach space, C a closed convex subset of E and T : C → C a
self-map of C with a fixed point p satisfying the contractive condition (1.8) for some δ ∈ [0, 1).
For x1 ∈ C, let {xn}∞n=1 be the Ishikawa iterative scheme defined by (1.12), where the sequences
{αn}∞n=1, {βn}∞n=1 ⊂ (0, 1). Then {xn}∞n=1 (1.12) converges strongly to the unique fixed point p
of T .

Proof. The method of proof of Theorem 2.8 is similar to that of Theorem 2.1 The final
result is

∥xn+1 − p∥ ≤ [1− (1− δ)αn − (1− δ)δαnβn]∥xn − p∥(2.47)
≤ [1− (1− δ)δαnβn]∥xn − p∥

≤
n∏

m=1

[1− (1− δ)δαmβm]∥x1 − p∥.

Applying the conditions 0 ≤ δ < 1, αn, βn ∈ (0, 1) in (2.47), it result that limn→∞ ∥xn+1−
p∥ = 0.
That is, {xn}∞n=1 in (1.12) converges strongly to the unique fixed point p of T . □

Theorem 2.9. Let E be a Banach space, C a closed convex subset of E and T : C → C a self-map
of C with a fixed point p satisfying the contractive condition (1.8) for some δ ∈ [0, 1). For x1 ∈ C,
let {xn}∞n=1 be the Picard-Mann hybrid iterative scheme defined by (1.11), where the sequence
{αn}∞n=1 ⊂ (0, 1). Then {xn}∞n=1 (1.11) converges strongly to the unique fixed point p of T .

Proof. The method of proof of Theorem 2.9 is similar to that of Theorem 2.1. The final
result is

∥xn+1 − p∥ ≤ δ[1− (1− δ)αn]∥xn − p∥(2.48)

≤
n∏

m=1

δ[1− (1− δ)αm]∥x1 − p∥.

Applying the conditions 0 ≤ δ < 1, αn ∈ (0, 1) in (2.48), it result that limn→∞ ∥xn+1−p∥ =
0.
That is, {xn}∞n=1 in (1.11) converges strongly to the unique fixed point p of T . This ends
the proof. □

Theorem 2.10. Let E be a Banach space, C a closed convex subset of E and T : C → C a self-map
of C with a fixed point p satisfying the contractive condition (1.8) for some δ ∈ [0, 1). For x1 ∈ C,
let {xn}∞n=1 be the Mann iterative scheme defined by (1.10), where the sequence {αn}∞n=1 ⊂ (0, 1).
Then {xn}∞n=1 (1.10) converges strongly to the unique fixed point p of T .

Proof. The method of proof of Theorem 2.10 is similar to that of Theorem 2.1. The final
result is

∥xn+1 − p∥ ≤ [1− (1− δ)αn]∥xn − p∥(2.49)

≤
n∏

m=1

[1− (1− δ)αm]∥x1 − p∥.

Applying the conditions 0 ≤ δ < 1, αn ∈ (0, 1) in (2.49), it result that limn→∞ ∥xn+1−p∥ =
0.
That is, {xn}∞n=1 in (1.10) converges strongly to the unique fixed point p of T . □
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Theorem 2.11. Let E be a Banach space, C a closed convex subset of E and T : C → C a
self-map of C with a fixed point p satisfying the contractive condition (1.8) for some δ ∈ [0, 1).
For x1 ∈ C, let {xn}∞n=1 be the Picard iterative scheme defined by (1.9). Then {xn}∞n=1 (1.9)
converges strongly to the unique fixed point p of T .

Proof. The method of proof of Theorem 2.11 is similar to that of Theorem 2.1. The final
result is

∥xn+1 − p∥ ≤ δ∥xn − p∥.(2.50)

Applying the condition 0 ≤ δ < 1 in (2.50), it result that limn→∞ ∥xn+1 − p∥ = 0.
That is, {xn}∞n=1 in (1.9 converges strongly to the unique fixed point p of T . □

3. MAIN RESULT II

3.1. Convergence Results for Non-expansive Mapping in Uniformly Convex Banach
Spaces. In this section, we present some convergence fixed point results for the class of
non-expansive mappings in uniformly convex Banach spaces.
We now prove our main results II using iterative schemes (2.17), (2.18) and (2.19) as fol-
lows:

Theorem 3.12. Let E be a uniformly convex Banach space, C a non-empty closed convex subset
of E and T : C → C a non-expansive self mapping of C satisfying the condition

∥Tx− Ty∥ ≤ ∥x− y∥, ∀x, y ∈ C.(3.51)

For x1 ∈ C, let {xn}∞n=1 be the modified multistep iterative scheme (A) defined by (2.17), where
the sequences {αn}∞n=1, {βi

n}∞n=1 ⊂ [ϵ, 1 − ϵ], for some ϵ ∈ (0, 1), where (i = 1, 2, ..., k − 1). If
FT ̸= ∅, then limn→∞∥xn − Txn∥ = 0.

Proof. Suppose p ∈ FT , then applying (3.51) on (2.17), we have

∥xn+1 − p∥ = ∥(1− αn)Txn + αnTy
1
n − p∥(3.52)

≤ (1− αn)∥Txn − p∥+ αn∥Ty1n − p∥
≤ (1− αn)∥xn − p∥+ αn∥y1n − p∥.

∥y1n − p∥ ≤ (1− β1
n)∥xn − p∥+ β1

n∥Ty2n − p∥(3.53)
≤ (1− β1

n)∥xn − p∥+ β1
n∥y2n − p∥.

∥y2n − p∥ ≤ (1− β2
n)∥xn − p∥+ β2

n∥y3n − p∥.(3.54)

∥y3n − p∥ ≤ (1− β3
n)∥xn − p∥+ β3

n∥y4n − p∥.(3.55)
...

∥yk−2
n − p∥ ≤ (1− βk−2

n )∥xn − p∥+ βk−2
n ∥yk−1

n − p∥.(3.56)

∥yk−1
n − p∥ ≤ (1− βk−1

n )∥xn − p∥+ βk−1
n ∥xn − p∥(3.57)

= ∥xn − p∥.
Substituting (3.53) to (3.57) in (3.52) and simplifying, we have

∥xn+1 − p∥ ≤ ∥xn − p∥.(3.58)

Thus, limn→∞ ∥xn+1 − p∥ exists. Let limn→∞ ∥xn+1 − p∥ = c.
Now,
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∥yk−1
n − p∥ ≤ ∥xn − p∥ ⇒ limn→∞sup∥yk−1

n − p∥ ≤ c.(3.59)

∥yk−2
n − p∥ ≤ ∥xn − p∥ ⇒ limn→∞sup∥yk−2

n − p∥ ≤ c.(3.60)

∥y3n − p∥ ≤ ∥xn − p∥ ⇒ limn→∞sup∥y3n − p∥ ≤ c.(3.61)

∥y2n − p∥ ≤ ∥xn − p∥ ⇒ limn→∞sup∥y2n − p∥ ≤ c.(3.62)

∥y1n − p∥ ≤ ∥xn − p∥ ⇒ limn→∞sup∥y1n − p∥ ≤ c.(3.63)

c = limn→∞ ∥xn+1 − p∥ = limn→∞ ∥(1− αn)(Txn − p) + αn(Ty
1
n − p)∥ holds for some

c ≥ 0.
Thus, by Lemma 1.2,

lim
n→∞

∥(1− αn)(Txn − Ty1n)∥ = 0.(3.64)

Therefore,

∥xn+1 − p∥ = ∥(Txn − p) + αn(Txn − Ty1n)∥ ≤ ∥(Txn − p)∥+ αn∥(Txn − Ty1n)∥,
yields

limn→∞inf∥Txn − p∥.(3.65)

∥Txn − p∥ ≤ ∥Txn − Ty1n∥+ ∥Ty1n − p∥ ≤ ∥Txn − Ty1n∥+ ∥y1n − p∥.
Thus,

limn→∞inf∥y1n − p∥.(3.66)

From (3.63) and (3.66), we obtain

limn→∞∥y1n − p∥ = c.(3.67)

Also,

∥Ty1n − p∥ ≤ ∥Ty1n − Ty2n∥+ ∥Ty2n − p∥ ≤ ∥Ty1n − Ty2n∥+ ∥y2n − p∥.
Thus,

limn→∞inf∥y2n − p∥.(3.68)

From (3.62) and (3.68),we obtain

limn→∞∥y2n − p∥ = c.(3.69)

Similarly,

∥Ty2n − p∥ ≤ ∥Ty2n − Ty3n∥+ ∥Ty3n − p∥ ≤ ∥Ty2n − Ty3n∥+ ∥y3n − p∥.
Thus,

limn→∞inf∥y3n − p∥.(3.70)

From (3.61) and (3.70),we obtain

limn→∞∥y3n − p∥ = c.(3.71)

∥Tyk−2
n − p∥ ≤ ∥Tyk−2

n − Tyk−1
n ∥+ ∥Tyk−1

n − p∥ ≤ ∥Tyk−2
n − Tyk−1

n ∥+ ∥yk−1
n − p∥.

Thus,

limn→∞inf∥yk−1
n − p∥.(3.72)

From (3.59) and (3.72),we obtain

limn→∞∥yk−1
n − p∥ = c.(3.73)
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Therefore,

c = lim
n→∞

∥yk−1
n − p∥ = lim

n→∞
∥(1− βk−1

n )(xn − p) + βk−1
n (Txn − p)∥

and by Lemma 1.3, we have the result limn→∞ ∥Txn − xn∥. □

Theorem 3.13. Let E be a uniformly convex Banach space, C a non-empty closed convex subset
of E and T : C → C a non-expansive self mapping of C satisfying the condition

∥Tx− Ty∥ ≤ ∥x− y∥, ∀x, y ∈ C.(3.74)

For x1 ∈ C, let {xn}∞n=1 be the modified multistep iterative scheme (B) defined by (2.18), where
the sequences {αn}∞n=1, {βi

n}∞n=1 ⊂ [ϵ, 1 − ϵ], for some ϵ ∈ (0, 1), where (i = 1, 2, ..., k − 1). If
FT ̸= ∅, then limn→∞∥xn − Txn∥ = 0.

Proof. The method of proof of Theorem 3.13 is similar to that of Theorem 3.12. □

Theorem 3.14. Let E be a uniformly convex Banach space, C a non-empty closed convex subset
of E and T : C → C a non-expansive self mapping of C satisfying the condition

∥Tx− Ty∥ ≤ ∥x− y∥, ∀x, y ∈ C.(3.75)

For x1 ∈ C, let {xn}∞n=1 be the modified multistep iterative scheme (C) defined by (2.19), where
the sequences {αn}∞n=1, {βi

n}∞n=1 ⊂ [ϵ, 1 − ϵ], for some ϵ ∈ (0, 1), where (i = 1, 2, ..., k − 1). If
FT ̸= ∅, then limn→∞∥xn − Txn∥ = 0.

Proof. The method of proof of Theorem 3.14 is similar to that of Theorem 3.12 . □

Theorem 3.15. Let E be a uniformly convex Banach space, C a non-empty closed convex subset
of E and T : C → C a non-expansive self mapping of C satisfying the condition

∥Tx− Ty∥ ≤ ∥x− y∥, ∀x, y ∈ C.(3.76)

For x1 ∈ C, let {xn}∞n=1 be the iterative schemes defined respectively by (1.14), (1.13), (1.12),
(1.11), (1.10) and (1.9), where the sequences {αn}∞n=1, {βn}∞n=1, {γn}∞n=1 ⊂ [ϵ, 1 − ϵ], for some
ϵ ∈ (0, 1). If FT ̸= ∅, then limn→∞∥xn − Txn∥ = 0.

Proof. The method of proof of Theorem 3.15 is similar to that of Theorem 3.12. □

4. MAIN RESULT III

4.1. Application of Modified Multistep Iterative Schemes to Constrained Optimiza-
tion and Split Feasibility Problems in Real Hilbert Spaces. In this section, we give a
brief explanation of constrained optimization and split feasibility problems in the frame-
work of Hilbert spaces, we will also present the relevance of existence and approximation
of solutions in variational inequalities and prove some useful results using the modified
multistep iterative schemes (A1), (B1) and (C1) for non-expansive mappings.

Let H be a Hilbert space and C be a non-empty, closed subset of H . T : C → H be a
nonself operator.
Let V I(C, T ) represent the variational inequality problem defined by C and T . Let Ω(C, T )
be the set of all vectors which solves V I(C, T ) problem. Fixed point problem has an
equivalent relationship with V I(C, T ) problem in the sense that x∗ = Fµx

∗ = PC(I −
µT )x∗, where x∗ ∈ C, µ > 0 is (a constant), PC is the metric projection from H onto C and
Fµ = PC(I − µT ).
The set of all fixed points in the V I(C, T ) is defined by

Ω(C, T ) = {x∗ : x∗ = Fµx
∗} = {x∗ : x∗ = PC(I − µT )x∗}.
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We now prove the following theorems that deal with variational inequality problem.

Definition 4.5. Let H be a Hilbert space and C be a non-empty, closed subset of H . T : C → H
be a nonself operator. T is called a contraction if

< PC(I − µT )x, PC(I − µT )y >≤ µ < x, y >, ∀x, y ∈ C,(4.77)

where 0 < µ < 2λ
L2 , L > 0.

Definition 4.6. Let H be a Hilbert space and C be a non-empty, closed subset of H . Let T : C →
H be an L− Lipschitzian and λ− strongly monotone operator with µ ∈ (0, 2µ

L2 ). Let Ω(C, T ) be
the set of all fixed points in the V I(C, T ) problem. The modified multistep iterative scheme (A1)
is the sequence {xn}∞n=1 ⊂ C defined by:

x1 ∈ C,(4.78)

xn+1 = (1− αn)PC(I − µT )xn + αnPC(I − µT )y1n,

yin = (1− βi
n)xn + βi

nPC(I − µT )yi+1
n , i = 1, 2, . . . , k − 2,

yk−1
n = (1− βk−1

n )xn + βk−1
n PC(I − µT )xn, k = 2, 3, . . . , n = 1, 2, . . . ,

where the sequences {αn}∞n=1, {βi
n}∞n=1 ⊂ [ϵ, 1− ϵ] for some ϵ ∈ (0, 1), for (i = 1, 2, ..., k − 1).

Definition 4.7. Let H be a Hilbert space and C be a nonempty, closed subset of H . Let T : C → H

be an L− Lipschitzian and λ− strongly monotone operator with µ ∈ (0, 2µ
L2 ). Let Ω(C, T ) be the

set of all fixed points in the V I(C, T ) problem. The modified multistep iterative scheme (B1) is
the sequence {xn}∞n=1 ⊂ C defined by:

x1 ∈ C,(4.79)

xn+1 = (1− αn)PC(I − µT )xn + αnPC(I − µT )y1n,

yin = (1− βi
n)y

i+1
n + βi

nPC(I − µT )yi+1
n , i = 1, 2, . . . , k − 2,

yk−1
n = (1− βk−1

n )xn + βk−1
n PC(I − µT )xn, k = 2, 3, . . . , n = 1, 2, . . . ,

where the sequences {αn}∞n=1, {βi
n}∞n=1 ⊂ [ϵ, 1− ϵ] for some ϵ ∈ (0, 1), for (i = 1, 2, ..., k − 1).

Definition 4.8. Let H be a Hilbert space and C be a nonempty, closed subset of H . Let T : C → H

be an L− Lipschitzian and λ− strongly monotone operator with µ ∈ (0, 2µ
L2 ). Let Ω(C, T ) be the

set of all fixed points in the V I(C, T ) problem. The modified multistep iterative scheme (C1) is
the sequence {xn}∞n=1 ⊂ C defined by:

x1 ∈ C,(4.80)

xn+1 = (1− αn)PC(I − µT )y1n + αnPC(I − µT )y1n,

yin = (1− βi
n)y

i+1
n + βi

nPC(I − µT )yi+1
n , i = 1, 2, . . . , k − 2,

yk−1
n = (1− βk−1

n )xn + βk−1
n PC(I − µT )xn, k = 2, 3, . . . , n = 1, 2, . . . ,

where the sequences {αn}∞n=1, {βi
n}∞n=1 ⊂ [ϵ, 1− ϵ] for some ϵ ∈ (0, 1), for (i = 1, 2, ..., k − 1).

We now prove the following theorems that deal with variational inequality problem.

Theorem 4.16. Let H be a Hilbert space and C be a nonempty, closed subset of H . Let T : C → H

be an L− Lipschitzian and λ− strongly monotone operator with µ ∈ (0, 2µ
L2 ). Let Ω(C, T ) be the

set of all fixed points in the V I(C, T ) problem. Suppose {αn}∞n=1, {βi
n}∞n=1 ⊂ [ϵ, 1− ϵ] for some

ϵ ∈ (0, 1), for (i = 1, 2, ..., k − 1). For x1 ∈ C, let {xn}∞n=1 ⊂ C be the modified multistep
iterative schemes (A1), (B1) and (C1) defined respectively by (4.78), (4.79) and (4.80). Then,
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(i) the modified multistep iterative scheme (4.78) converges weakly to x∗ ∈ Ω(C, T );
(ii) the modified multistep iterative scheme (4.79) converges weakly to x∗ ∈ Ω(C, T );
(iii) the modified multistep iterative scheme (4.80) converges weakly to x∗ ∈ Ω(C, T ).

4.2. Application of Modified Multistep Iterative Schemes to Constrained Optimiza-
tion Problems in Hilbert Spaces. Iterative constrained optimization processes designed
to minimize a convex differentiable function T over a closed convex set C in a Hilbert
space are usually the algorithms for signal and image processing.

Let H be a Hilbert space and C be a nonempty, closed subset of H, PC the metric
projection of H onto C and let T : C → H be a v − ism where v > 0 is a constant. Then
PC(I − µT ) is a nonexpansive operator provided µ ∈ (0, 2v).
The modified multistep iterative scheme (A11) is the sequence {xn}∞n=1 ⊂ C defined by:

x1 ∈ C,(4.81)

xn+1 = (1− αn)PC(I −▽T )xn + αnPC(I −▽T )y1n,

yin = (1− βi
n)xn + βi

nPC(I −▽T )yi+1
n , i = 1, 2, . . . , k − 2,

yk−1
n = (1− βk−1

n )xn + βk−1
n PC(I −▽T )xn, k = 2, 3, . . . , n = 1, 2, . . . ,

where the sequences {αn}∞n=1, {βi
n}∞n=1 ⊂ [ϵ, 1−ϵ] for some ϵ ∈ (0, 1), for (i = 1, 2, ..., k−1).

The modified multistep iterative scheme (B11) is the sequence {xn}∞n=1 ⊂ C defined by:

x1 ∈ C,(4.82)

xn+1 = (1− αn)PC(I −▽T )xn + αnPC(I −▽T )y1n,

yin = (1− βi
n)y

i+1
n + βi

nPC(I −▽T )yi+1
n , i = 1, 2, . . . , k − 2,

yk−1
n = (1− βk−1

n )xn + βk−1
n PC(I −▽T )xn, k = 2, 3, . . . , n = 1, 2, . . . ,

where the sequences {αn}∞n=1, {βi
n}∞n=1 ⊂ [ϵ, 1−ϵ] for some ϵ ∈ (0, 1), for (i = 1, 2, ..., k−1).

The modified multistep iterative scheme (C11) is the sequence {xn}∞n=1 ⊂ C defined by:

x1 ∈ C,(4.83)

xn+1 = (1− αn)PC(I −▽T )y1n + αnPC(I −▽T )y1n,

yin = (1− βi
n)y

i+1
n + βi

nPC(I −▽T )yi+1
n , i = 1, 2, . . . , k − 2,

yk−1
n = (1− βk−1

n )xn + βk−1
n PC(I −▽T )xn, k = 2, 3, . . . , n = 1, 2, . . . ,

where the sequences {αn}∞n=1, {βi
n}∞n=1 ⊂ [ϵ, 1−ϵ] for some ϵ ∈ (0, 1), for (i = 1, 2, ..., k−1).

We shall now present results which generates the sequence of vectors in the constrained
set C which converges weakly to the optimal solution which minimizes T as follows:

Theorem 4.17. Let H be a Hilbert space and C be a nonempty, closed subset of H . Let T be a
convex and differentiable function on an open set D containing the set C. Assume ▽T is an L−
Lipschitz operator on D with µ ∈ (0, 2

L ) and there exist minimizers of T relative to the set C.
Suppose {αn}∞n=1, {βi

n}∞n=1 ⊂ [ϵ, 1− ϵ] for some ϵ ∈ (0, 1), for (i = 1, 2, ..., k − 1). For x1 ∈ C,
let {xn}∞n=1 ⊂ C be the modified multistep iterative schemes (A11), (B11) and (C11) defined
respectively by (4.81), (4.82) and (4.83). Then,
(i) the modified multistep iterative scheme (4.81) converges weakly to a minimizer of T ;
(ii) the modified multistep iterative scheme (4.82) converges weakly to a minimizer of T ;
(iii) the modified multistep iterative scheme (4.83) converges weakly to a minimizer of T.
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4.3. Application of Modified Multistep Iterative Schemes to Split Feasibility Problems
in Hilbert Spaces. Let SFP (C, T ) represent split feasibility problem of C and T . The
SFP (C, T ) is to find a point

x ∈ C : Tx ∈ Q,(4.84)

where C and Q are closed convex subsets of Hilbert spaces H1 and H2. The SFP (C, T ) is
said to be consistent if (4.84) has a solution.
Find

x ∈ C : x = PC(I − γT ∗(I − PQ)T )x,(4.85)

where PC and PQ are the orthogonal projections onto C and Q respectively with γ > 0, T ∗

is the adjoint of T . For sufficiently small γ > 0 the operator PC(I − γT ∗(I −PQ)T ) is non-
expansive. The SFP (C, T ) is said to be consistent if and only if the fixed point problem
in (4.85) has a solution x ∈ C. Iterative constrained optimization processes designed to
minimize a convex differentiable function T over a closed convex set C in a Hilbert space
are usually the algorithms for signal and image processing.

Consider the minimization problem

min q(x)x∈C .(4.86)

where q(x) = 1
2∥(T −PQT )x∥,∀x ∈ C, then the gradient of q is ▽q = T ∗(I −PQ)T , where

T ∗ is the adjoint of T .
▽q is an L−Lipschitzian with L = ∥T∥2 since I−PQ is nonexpansive. Thus, ▽q is 1

L−ism

for any µ ∈ (0, 2
L ) I − ▽q is averaged. Therefore the composition PC(I − µ ▽ q) = T is

averaged and the solution set of SFP (C, T ) = F (T ).

The modified multistep iterative scheme (A111) is the sequence {xn}∞n=1 ⊂ C defined
by:

x1 ∈ C,(4.87)

xn+1 = (1− αn)PC(I − µ▽ q)xn + αnPC(I − µ▽ q)y1n,

yin = (1− βi
n)xn + βi

nPC(I − µ▽ q)yi+1
n , i = 1, 2, . . . , k − 2,

yk−1
n = (1− βk−1

n )xn + βk−1
n PC(I − µ▽ q)xn, k = 2, 3, . . . , n = 1, 2, . . . ,

where the sequences {αn}∞n=1, {βi
n}∞n=1 ⊂ [ϵ, 1−ϵ] for some ϵ ∈ (0, 1), for (i = 1, 2, ..., k−1)

and µ ∈ (0, 2
∥T∥2 ).

The modified multistep iterative scheme (B111) is the sequence {xn}∞n=1 ⊂ C defined
by:

x1 ∈ C,(4.88)

xn+1 = (1− αn)PC(I − µ▽ q)xn + αnPC(I − µ▽ q)y1n,

yin = (1− βi
n)y

i+1
n + βi

nPC(I − µ▽ q)yi+1
n , i = 1, 2, . . . , k − 2,

yk−1
n = (1− βk−1

n )xn + βk−1
n PC(I − µ▽ q)xn, k = 2, 3, . . . , n = 1, 2, . . . ,

where the sequences {αn}∞n=1, {βi
n}∞n=1 ⊂ [ϵ, 1−ϵ] for some ϵ ∈ (0, 1), for (i = 1, 2, ..., k−1)

and µ ∈ (0, 2
∥T∥2 ).
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The modified multistep iterative scheme (C111) is the sequence {xn}∞n=1 ⊂ C defined
by:

x1 ∈ C,(4.89)

xn+1 = (1− αn)PC(I − µ▽ q)y1n + αnPC(I − µ▽ q)y1n,

yin = (1− βi
n)y

i+1
n + βi

nPC(I − µ▽ q)yi+1
n , i = 1, 2, . . . , k − 2,

yk−1
n = (1− βk−1

n )xn + βk−1
n PC(I − µ▽ q)xn, k = 2, 3, . . . , n = 1, 2, . . . ,

where the sequences {αn}∞n=1, {βi
n}∞n=1 ⊂ [ϵ, 1−ϵ] for some ϵ ∈ (0, 1), for (i = 1, 2, ..., k−1)

and µ ∈ (0, 2
∥T∥2 ).

Theorem 4.18. [1] Let E be a uniformly convex Banach space and let C be a nonempty closed
convex subset E, T be a nonexpansive self mappings of C and {xn}∞n=1 be defined by the iterative
scheme (1.15). Assume that (a) E satisfies Opial”s condition or (b) E has a Frechet differentiable
norm. If F (T ) ̸= ∅, then {xn}∞n=1 converges weakly to a fixed point of T.

We now use the iterative schemes (4.87) to (4.89) to find the solution of SFP (C, T ) in
the following theorem:

Theorem 4.19. Suppose that SFP (C, T ) is consistent. Let {αn}∞n=1, {βi
n}∞n=1 ⊂ [ϵ, 1 − ϵ] for

some ϵ ∈ (0, 1), for (i = 1, 2, ..., k − 1), where µ ∈ (0, 2
∥T∥2 ). For x1 ∈ C, let {xn}∞n=1 ⊂ C

be the modified multistep iterative schemes (A111), (B111) and (C111) defined respectively by
(4.87), (4.88) and (4.89). Then,
(i) the modified multistep iterative scheme (4.87) converges weakly to a solution of SFP (C, T );
(ii) the modified multistep iterative scheme (4.88) converges weakly to a solution of SFP (C, T );
(iii) the modified multistep iterative scheme (4.89) converges weakly to a solution of SFP (C, T ).

Proof. Since T = PC(I−µ▽q) is nonexpansive, let p ∈ SFP (C, T ). Then, limn→∞ ∥xn−p∥
exists. We prove that {xn} has a unique weak subsequential limit in SFP (C, T ). Let u and
v be weak limits of the subsequence {xni} and {xnj} of {xn} respectively.
By Theorem 3.1, limn→∞ ∥xn − PC(I − µ▽ q)xn∥ = 0 and I − T = I − PC(I − µ▽ q) is
demiclosed with respect to zero, thus we obtain Tu = PC(I − µ▽ q)u = u. Similarly, we
can prove that v ∈ SFP (C, T ).
Next, we prove uniqueness. Assume u ̸= v, then by Opial condition,
limn→∞ ∥xn − u∥ = limni→∞ ∥xni − u∥ < limni→∞ ∥xni − v∥ = limn→∞ ∥xn − v∥ =
limnj→∞ ∥xnj − v∥ < limnj→∞ ∥xnj − u∥ = limn→∞ ∥xn − u∥. This is a contradiction, so
u = v.
Assume E has a Frechet differentiable norm, by Lemma 1.2, < p − q, J(p1 − p2 >= 0 for
p, q ∈ ww(xn). Therefore, ∥u − v∥2 =< u − v, J(u − v >= 0 implies u = v. Thus, (4.87)
converges weakly to a solution of SFP (C, T ). This ends the proof.
(ii) The proof of (ii) is similar to that of (i). □

4.4. Convergence Speed of the Various Iterative Schemes in Banach Spaces. In this sec-
tion, we present the convergence speed of iterative schemes (1.9) - (1.16), (2.17) - (2.19).
Let PMann represent Picard-Mann hybrid Iterative scheme (1.11);
Let Agal IS represent Agarwal et al. iterative scheme (1.13);
Let AIS represent Abbas and Nazir iterative scheme (1.15);
Let TIS represent Thakur et al. iterative scheme (1.16);
Let Mmultistep IS A represent modified multistep iterative scheme A (2.17);
Let Mmultistep IS B represent modified multistep iterative scheme B (2.18);
Let Mmultistep IS C represent modified multistep iterative scheme C (2.19).
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Theorem 4.20. Let {an}∞n=0 and {bn}∞n=0 be two non-negative real sequences which converge to
a and b respectively. Let J = limn→∞

|an−a|
|bn−b| ,

(i). if J = 0, then {an}∞n=0 converges to a faster than {bn}∞n=0 converges to b;
(ii). if 0 < J < ∞, then both {an}∞n=0 and {bn}∞n=0 have the same convergence rate;
(iii). if J = ∞, then {bn}∞n=0 converges to b faster than {an}∞n=0 converges to a.

Case 1. Comparison of Mmultistep IS (C) (2.19) and TIS (1.16) gives:
Let J = limn→∞

∥xn+1(M−multiIS(C))−p∥
∥xn+1(TIS)−p∥ , then

J = limn→∞
δn[(1− (1− δ)δk−2)β1β2β3 . . . βk−2βk−1]n∥x1(MmultiIS)(C)− p∥

δn[(1− (1− δ2))αβ1β2]n∥x1(TIS)− p∥
= 0.

Thus, the modified multistep iterative scheme (C) (2.19) converges to the fixed point p faster than
Thakur et al. iterative scheme (1.16) to p.

Case 2. Comparison of Mmultistep IS (C) (2.19) and AIS (1.15) gives:
Let J = limn→∞

∥xn+1(M−multiIS(C))−p∥
∥xn+1(AIS)−p∥ , then

J = limn→∞
δn[(1− (1− δ)δk−2)β1β2β3 . . . βk−2βk−1]n∥x1(MmultiIS)(C)− p∥

δn[(1− (1− δ))αβ1β2]n∥x1(AIS)− p∥
= 0.

Thus, the modified multistep iterative scheme (C) (2.19) converges to the fixed point p faster than
Abbas and Nazir iterative scheme (1.15) to p.

Case 3.Comparison of Mmultistep IS (C) (2.19) and Noor (1.14) gives:
Let J = limn→∞

∥xn+1(M−multiIS(C))−p∥
∥xn+1(Noor)−p∥ , then

J = limn→∞
δn[(1− (1− δ)δk−2)β1β2β3 . . . βk−2βk−1]n∥x1(Mmulti IS)(C)− p∥

[(1− (1− δ)δ2)αβ1β2]n∥x1(Noor)− p∥
= 0.

Thus, the modified multistep iterative scheme (C) (2.19) converges to the fixed point p faster than
Noor iterative scheme (1.14) to p.

Case 4. Comparison of Mmultistep IS (C) (2.19) and AgarIS (1.13) gives:
Let J = limn→∞

∥xn+1(M−multiIS(C))−p∥
∥xn+1(AgarIS)−p∥ , then

J = limn→∞
δn[(1− (1− δ)δk−2)β1β2β3 . . . βk−2βk−1]n∥x1(Mmulti IS)(C)− p∥

δn[(1− (1− δ))αβ1]n∥x1(AgarIS)− p∥
= 0.

Thus, the modified multistep iterative scheme (C) (2.19) converges to the fixed point p faster than
Agarwal et al. iterative scheme (1.13) to p.

Case 5. Comparison of Mmultistep IS (C) (2.19) and Ishikawa (1.12) gives:
Let J = limn→∞

∥xn+1(M−multiIS(C))−p∥
∥xn+1(Ishi)−p∥ , then

J = limn→∞
δn[(1− (1− δ)δk−2)β1β2β3 . . . βk−2βk−1]n∥x1(Mmulti IS)(C)− p∥

[(1− (1− δ)δ2)αβ1]n∥x1(Ishi)− p∥
= 0.

Thus, the modified multistep iterative scheme (C) (2.19) converges to the fixed point p faster than
Ishikawa iterative scheme (1.12) to p.

Case 6. Comparison of Mmultistep IS (C) (2.19) and PMann IS (1.11) gives:



Fixed point iterations for non-expansive maps ... 207

Let J = limn→∞
∥xn+1(M−multiIS(C))−p∥

∥xn+1(PMann)−p∥ , then

J = limn→∞
δn[(1− (1− δ)δk−2)β1β2β3 . . . βk−2βk−1]n∥x1(Mmulti IS)(C)− p∥

δn[(1− (1− δ))α]n∥x1(PMann)− p∥
= ∞.

Thus, the modified multistep iterative scheme (C) (2.19) converges to the fixed point p faster than
Picard-Mann iterative scheme (1.11) p.

Case 7. Comparison of Mmultistep IS (C) (2.19) and Mann (1.10) iterative schemes gives:
Let J = limn→∞

∥xn+1(M−multiIS(C))−p∥
∥xn+1(Mann)−p∥ , then

J = limn→∞
δn[(1− (1− δ)δk−2)β1β2β3 . . . βk−2βk−1]n∥x1(Mmulti IS)(C)− p∥

[(1− (1− δ))α]n∥x1(Mann)− p∥
= 0.

Thus, the modified multistep iterative scheme (C) (2.19) converges to the fixed point p faster than
Mann iterative scheme (1.10) to p.

Case 8. Comparison of Mmultistep IS (C) (2.19) and Picard (1.9) iterative schemes gives:
Let J = limn→∞

∥xn+1(M−multiIS(C))−p∥
∥xn+1(Picard)−p∥ , then

J = limn→∞
δn[(1− (1− δ)δk−2)β1β2β3 . . . βk−2βk−1]n∥x1(Mmulti IS)(C)− p∥

[δn]∥x1(Picard)− p∥
= 0.

Thus, the modified multistep iterative scheme (C) (2.19) converges to the fixed point p faster than
Picard iterative scheme (1.9) to p.

Case 9. Comparison of Mmultistep IS (A) (2.17) and T-IS (1.16) gives:
Let J = limn→∞

∥xn+1(MmultiIS(A))−p∥
∥xn+1(T−IS)−p∥ , then

J = limn→∞
δn[(1− (1− δk−1))αβ1β2β3 . . . βk−2βk−1]n∥x1(MmultiIS)− p∥

δn[(1− (1− δ2))αβ1β2]n∥x1(TIS)− p∥
= ∞.

Thus, Thakur et al. iterative scheme (1.16) converges to the fixed point p faster than modified mul-
tistep iterative scheme (A) (2.17) to p.

5. NUMERICAL EXAMPLES

Example 5.2. Let E be the set of real numbers and C = [0, 50]. Let T : C → C be a mapping
defined by Tx =

√
x2 − 8x+ 40 ∀x ∈ C. Choose αn = 0.85, β1

n = 0.65, β2
n = 0.45, β3

n = 0.25,
β4
n = 0.05. Let the initial value be x1 = 40 ∈ C, and the fixed point p = 5.0 ∈ C.

We now present the convergence speed of the various iterative schemes under this
study in Figure 1. It is already known in [32] that iterative scheme (1.16) is faster than
(1.9), (1.10), (1.12) to (1.16). We only need to compare iterative schemes (2.17) to (2.19),
(1.11) with (1.16). The fixed point of T is p = 5 and all the iterative schemes converge to p.

The approximate values of modified multistep iterative scheme (Mmulti IS) (A) (2.17),
modified multistep iterative scheme (Mmulti IS) (B) (2.18), modified multistep iterative
scheme (Mmulti IS) (C) (2.19), Picard-Mann iterative scheme PMannIS) (1.11) and Thakur
et al. iterative scheme (TIS) (1.16) to their fixed points are shown in Figure 1.
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TABLE 1. The Convergence Speed of the Iterative Schemes on Example 5.2

No. Picard Mann Picard-
Mann

Ishikawa Agarwal Noor Abass-
Nazir

Thakur Mmulti-
SA

Mmulti-
SB

Mmulti-
SC

1 40.0000 40.0000 40.0000 40.0000 40.0000 40.0000 40.0000 40.0000 40.0000 40.0000 40.0000
2 36.3318 36.8820 33.2450 34.8752 34.3249 33.9816 34.2400 32.9459 33.1994 32.0321 31.2733
3 32.7008 33.7905 26.6456 29.8335 28.7529 28.0883 28.5874 26.0697 26.5642 24.3100 22.8544
4 29.1160 30.7306 20.2911 24.9067 23.3290 22.3812 23.0905 19.4826 20.1921 17.0264 15.0287
5 25.5893 27.7091 14.3649 20.1467 18.1322 16.9736 17.8351 13.4242 14.2849 10.6623 8.6021
6 22.1381 24.7348 9.2952 15.6449 13.3147 12.0962 12.9887 8.4746 9.3072 6.4343 5.4478
7 18.7881 21.8200 6.0360 11.5741 9.1939 8.2289 8.9032 5.7280 6.1764 5.1555 5.0238
8 15.5784 18.9820 5.0992 8.2639 6.3717 6.0182 6.2124 5.0765 5.1712 5.0115 5.0011
9 12.5722 16.2455 5.0066 6.1737 5.2434 5.2517 5.2065 5.0065 5.0187 5.0008 5.0001

10 9.8733 13.6476 5.0004 5.3185 5.0298 5.0576 5.0253 5.0005 5.0019 5.0001 5.0000
11 7.6483 11.2443 5.0000 5.0769 5.0034 5.0130 5.0029 5.0000 5.0002 5.0000 5.0000
12 6.1082 9.1201 5.0000 5.0180 5.0004 5.0029 5.0003 5.0000 5.0000 5.0000 5.0000
13 5.3333 7.3914 5.0000 5.0042 5.0000 5.0006 5.0000 5.0000 5.0000 5.0000 5.0000
14 5.0772 6.1733 5.0000 5.0010 5.0000 5.0001 5.0000 5.0000 5.0000 5.0000 5.0000
15 5.0160 5.4815 5.0000 5.0002 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000
16 5.0032 5.1726 5.0000 5.0001 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000
17 5.0006 5.0576 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000
18 5.0001 5.0187 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000
19 5.0000 5.0060 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000
20 5.0000 5.0019 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000
21 5.0000 5.0006 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000
22 5.0000 5.0002 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000
23 5.0000 5.0001 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000
24 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000
25 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000
26 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000
27 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000

Example 5.3. Let E be the set of real numbers and C = [0, 50]. Let T : C → C be a mapping
defined by Tx =

√
x2 − 8x+ 40 ∀x ∈ C. Choose αn = β1

n = β2
n = β3

n = β4
n = 0.5. Let the

initial value be x1 = 40 ∈ C and the fixed point p = 5.0 ∈ C = [0, 50].

FIGURE 1. Convergence Speed of Fixed-Point Iterative Schemes on Ex-
ample 5.2
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We now present the convergence speed of the various iterative schemes under this study in Figure
2. The fixed point of T is p = 5 and all the iterative schemes converge to p.

TABLE 2. The Convergence Speed of the Iterative Schemes on Example 5.3

No. Picard Mann Picard-
Mann

Ishikawa Agarwal Noor Abass-
Nazir

Thakur Mmulti-
SA

Mmulti-
SB

Mmulti-
SC

1 40.0000 40.0000 40.0000 40.0000 40.0000 40.0000 40.0000 40.0000 40.0000 40.0000 40.0000
2 36.3318 38.1659 34.5153 37.2577 35.4236 36.8083 33.1593 34.5207 34.6420 32.7335 29.1352
3 32.7008 36.3406 29.1257 34.5371 30.9095 33.6480 26.4817 29.1385 29.3792 25.6736 18.8447
4 29.1160 34.5251 23.8704 31.8420 26.4778 30.5259 20.0639 23.8940 24.2505 18.9625 10.0100
5 25.5893 32.7204 18.8168 29.1773 22.1589 27.4507 14.1073 18.8574 19.3222 12.9216 5.4701
6 22.1381 30.9278 14.0903 26.5488 18.0021 24.4344 9.0868 14.1593 14.7143 8.2836 5.0136
7 18.7881 29.1488 9.9440 23.9647 14.0920 21.4936 5.9870 10.0601 10.6566 5.8526 5.0004
8 15.5784 27.3852 6.8749 21.4357 10.5818 18.6520 5.1076 7.0387 7.5503 5.1324 5.0000
9 12.5722 25.6390 5.4025 18.9761 7.7455 15.9440 5.0085 5.5150 5.7833 5.0158 5.0000

10 9.8733 23.9128 5.0557 16.6061 5.9443 13.4198 5.0007 5.0856 5.1607 5.0018 5.0000
11 7.6483 22.2097 5.0068 14.3537 5.2133 11.1507 5.0000 5.0121 5.0266 5.0002 5.0000
12 6.1082 20.5334 5.0008 12.2582 5.0373 9.2258 5.0000 5.0016 5.0042 5.0000 5.0000
13 5.3333 18.8887 5.0001 10.3725 5.0061 7.7244 5.0000 5.0002 5.0007 5.0000 5.0000
14 5.0772 17.2813 5.0000 8.7603 5.0010 6.6636 5.0000 5.0000 5.0001 5.0000 5.0000
15 5.0160 15.7187 5.0000 7.4788 5.0002 5.9777 5.0000 5.0000 5.0000 5.0000 5.0000
16 5.0032 14.2101 5.0000 6.5468 5.0000 5.5611 5.0000 5.0000 5.0000 5.0000 5.0000
17 5.0006 12.7673 5.0000 5.9257 5.0000 5.3176 5.0000 5.0000 5.0000 5.0000 5.0000
18 5.0001 11.4053 5.0000 5.5388 5.0000 5.1784 5.0000 5.0000 5.0000 5.0000 5.0000
19 5.0000 10.1422 5.0000 5.3085 5.0000 5.0997 5.0000 5.0000 5.0000 5.0000 5.0000
20 5.0000 8.9994 5.0000 5.1749 5.0000 5.0556 5.0000 5.0000 5.0000 5.0000 5.0000
21 5.0000 7.9995 5.0000 5.0986 5.0000 5.0310 5.0000 5.0000 5.0000 5.0000 5.0000
22 5.0000 7.1619 5.0000 5.0555 5.0000 5.0172 5.0000 5.0000 5.0000 5.0000 5.0000
23 5.0000 6.4963 5.0000 5.0311 5.0000 5.0096 5.0000 5.0000 5.0000 5.0000 5.0000
24 5.0000 5.9973 5.0000 5.0175 5.0000 5.0053 5.0000 5.0000 5.0000 5.0000 5.0000
25 5.0000 5.6439 5.0000 5.0098 5.0000 5.0030 5.0000 5.0000 5.0000 5.0000 5.0000
26 5.0000 5.4057 5.0000 5.0055 5.0000 5.0016 5.0000 5.0000 5.0000 5.0000 5.0000
27 5.0000 5.2512 5.0000 5.0031 5.0000 5.0009 5.0000 5.0000 5.0000 5.0000 5.0000
28 5.0000 5.1537 5.0000 5.0017 5.0000 5.0005 5.0000 5.0000 5.0000 5.0000 5.0000
29 5.0000 5.0933 5.0000 5.0010 5.0000 5.0003 5.0000 5.0000 5.0000 5.0000 5.0000
30 5.0000 5.0564 5.0000 5.0005 5.0000 5.0002 5.0000 5.0000 5.0000 5.0000 5.0000
31 5.0000 5.0340 5.0000 5.0003 5.0000 5.0001 5.0000 5.0000 5.0000 5.0000 5.0000
32 5.0000 5.0205 5.0000 5.0002 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000
33 5.0000 5.0123 5.0000 5.0001 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000
34 5.0000 5.0074 5.0000 5.0001 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000
35 5.0000 5.0044 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000
36 5.0000 5.0027 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000
37 5.0000 5.0016 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000
38 5.0000 5.0010 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000
39 5.0000 5.0006 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000
40 5.0000 5.0003 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000

The approximate values of Picard (1.9), Mann (1.10), Picard- Mann (1.11), Ishikawa
(1.12), Agawalel at. (1.13), Noor (1.14), Abbas and Nazir (1.15), Thakur et al. (1.16),
modified multistep (MmultiIS) (A) (2.17), modified multistep (MmultiIS) (B) (2.18)
and modified multistep(MmultiIS) (C) (2.19) iterative schemes to their fixed points are
shown in Figure 2.

6. CONCLUSION

This research is novel. The convergence speed of several iterative schemes were proven
to the fixed point analytically and numerically. The numerical results were represented
graphically in Figures 1 and 2.

The graph illustrated that the multistep iterative scheme C converged to the fixed point
p = 5.0 in lesser number of iterations than some of the existing iterative schemes in the
literature including Thakur et al. [31]. With the help of well constructed theorems the
modified iterative schemes A, B and C were applied to constrained minimization and
split feasibility problems for the class of nonexpansive mappings in Hilbert spaces. The
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FIGURE 2. Convergence Speed of Fixed-Point Iterative Schemes on Ex-
ample 5.3

various iterative schemes and classes of mappings considered in this study have good
potentials for further research.
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