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Reciprocal distance spectrum of Indu-Bala product of
graphs

ARATHY KALLELI DAMODARAN AND PRAVAS KARUVACHERY

ABSTRACT. Let G be a simple connected graph. The reciprocal distance spectrum of G is the multiset of
reciprocal distance eigenvalues of G. The Indu-Bala product G▼H of two graphs G and H is obtained from two
disjoint copies of the join G∨H of G and H by joining the corresponding vertices in the two copies of H . In this
paper we obtain the reciprocal distance spectrum of G▼H in terms of adjacency eigenvalues of G and H . We
also construct infinitely many non-isomorphic pairs of reciprocal distance equienergetic graphs and reciprocal
distance cospectral graphs of diameter 3.

1. INTRODUCTION

In this paper we consider undirected, finite and simple graphs. Let G = (V (G), E(G))
be a graph of order n with V (G) = {z1, z2, . . . , zn}. Let djk denote the distance between
zj and zk. The largest distance between any pair of distinct vertices in G is the diameter
of G. We refer [13] for graph theoretic terminology.
There are several matrices associated with a graph and many of them are found to be
applicable in theoretical physics, quantum mechanics, molecular chemistry, data com-
munication systems etc[6, 17]. Exploring the characteristic polynomials and eigenval-
ues associated with these matrices has been a focal point of research within spectral
graph theory. A significant amount of structural information about the graph can be
inferred from the spectrum of these matrices. The simplest way by which a graph G
can be represented using a matrix is its adjacency matrix A(G). The adjacency char-
acteristic polynomial in µ is defined by Φ

(
A(G);µ

)
= det

(
µI − A(G)

)
. The eigenval-

ues of A(G) are the adjacency eigenvalues (or, simply eigenvalues)[6] of G denoted by
µ1(G) ≥ µ2(G) ≥ . . . ≥ µn(G) and their collection is the spectrum Spec(G) of G. If
µn1(G), . . . , µnt(G) are the distinct eigenvalues of G with multiplicities m1, . . . ,mt then
we write Spec(G) = {µn1(G)m1 , . . . , µnt(G)mt}. µ1(G) is of multiplicity 1, when G is con-
nected. If G is r-regular then µ1(G) = r. G is cospectral with a graph G′ if Spec(G) =
Spec(G′).
The energy E(G), of G is defined as the sum of the absolute values of the adjacency
eigenvalues[11]. i.e.,

(1.1) E(G) =

n∑
j=1

|µj(G)| .

The concept of the energy of a graph emerged from the field of theoretical chemistry with
roots in the study of molecular graphs and their associated energy, which is calculated
using the Hückel molecular orbital theory. For more details on energy refer [1, 12, 18].
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The reciprocal distance(RD) matrix was introduced by Ivancius et.al[16], and found ap-
plicable in the study of molecular graphs in quantitative structure - property relationships
(QSPR) and quantitative structure - activity relationships (QSAR) models. The recipro-
cal distance matrix of a connected graph G, also known as Harary matrix[24], is a square
matrix of order n defined as RD(G) = [hjk], where

hjk =

{ 1
djk

j ̸= k

0 otherwise

Let Φ
(
RD(G); ζ

)
denote the reciprocal distance characteristic polynomial in ζ of G. Be-

ing a real symmetric matrix the eigenvalues of RD(G) are real numbers and are called
the reciprocal distance(RD) eigenvalues(or, Harary eigenvalues) of G; labeled as ζ1(G) ≥
ζ2(G) ≥ . . . ≥ ζn(G) constitute the reciprocal distance spectrum(or, Harary spectrum)
of G denoted by SpecRD(G). If ζn1

(G), . . . , ζnt
(G) are the distinct RD-eigenvalues of G

with multiplicities m1, . . . ,mt then we write SpecRD(G) = {ζn1
(G)m1 , . . . , ζnt

(G)mt}. The
largest RD-eigenvalue ζ1(G) is the reciprocal distance spectral radius of the graph G, ex-
tensively studied in [5, 7, 31]. Two non-isomorphic connected graphs are reciprocal dis-
tance cospectral[26] if their RD-eigenvalues are the same.
The reciprocal distance index(or, Harary index) of G is defined as half the sum of the en-
tries of RD(G). It is a well-known topological index with various physico-chemical prop-
erties. Relations between reciprocal distance index and several graph properties are ob-
tained in[9]. The reciprocal distance energy(or, Harary energy) of G, denoted by RDE(G),
is defined analogous to equation (1.1). i.e.,

(1.2) RDE(G) =

n∑
j=1

|ζj(G)|.

Results on reciprocal distance energy are found in [5, 10, 25, 26]. Two non-isomorphic
connected graphs are reciprocal distance equienergetic[25] if they have the same recipro-
cal distance energy.
Graph operations hold significance within spectral graph theory as they are applied in
constructing several graph classes with special structures and properties. In specific sce-
narios, the spectrum of a comparatively larger graph can be described in terms of the
spectra of smaller graphs (graphs involved in the operation) through graph operations
such as disjoint union, graph join, edge deletion/insertion, and graph complement etc.
This allows for the representation of a complex network using small, easily recognizable
graphs whose spectra can be computed easily. For more details see the survey by Barik et
al.[3].
The line graph L(G) of G is the graph whose vertices are the edges of G and two vertices
of L(G) are adjacent if the corresponding edges in G have a common vertex[13]. If G is
r-regular and has order n then L(G) is 2r− 2 regular with order nr

2 . For a positive integer
m ≥ 2, let Lm(G) denote the mth iterated line graph, defined by Lm(G) = L(Lm−1(G)),
where L1(G) = L(G)[13]. Clearly Lm(G) is regular for all m when G is regular. For m ≥ 1

let Lm(G) be rm-regular on nm vertices. Then nm =
nm−1 · rm−1

2
and rm = 2rm−1 − 2,

with n0 = n and r0 = r.
It can be deduced that

(1.3) nm =
n

2m

m−1∏
i=0

(
2ir − 2i+1 + 2

)
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and

(1.4) rm = 2mr − 2m+1 + 2.

The Indu-Bala product G▼H , of two graphs G and H , is obtained from two disjoint copies
of the join G ∨ H of G and H by joining the corresponding vertices in the two copies
of H[15]. This graph operation has garnered significant attention from researchers in
different areas of graph theory. Various Spectral studies of Indu-Bala product can be seen
in [2, 15, 21, 22]. Researches on degree based and distance based topological indices of
Indu-Bala product are reported in [14, 20, 27, 29].

FIGURE 1. Indu-Bala product of C4 and P2

In this paper, we obtain the RD-characteristic polynomial of G▼H , when G is regular
and H is an arbitrary graph. We completely describe the RD-spectrum of G▼H in terms
of adjacency eigenvalues of G and H , when both G and H are regular. As applications
we construct infinitely many pairs of non-isomorphic RD-equienergetic graphs and RD-
cospectral graphs of diameter 3.
Throughout this paper J denote the the all-one matrix of appropriate order.

2. PRELIMINARIES

We recall the following definitions and results.

Proposition 2.1. [30] Let P1, P2, P3 and P4 be matrices with P4 invertible and P =

[
P1 P2

P3 P4

]
.

Then det(P ) = det(P4) · det
(
P1 − P2P

−1
4 P3

)
, where P1 − P2P

−1
4 P3 is the Schur complement

of P4 in M .

Proposition 2.2. [8] Let P1 and P2 be square matrices of the same order and P =

[
P1 P2

P2 P1

]
.

Then the eigenvalues of P are those of P1 + P2 together with those of P1 − P2.

Definition 2.1. [4, 19] The coronal ΓG(µ) of a graph G on n vertices is the sum of the elements of(
µI − A(G)

)−1. i.e., ΓG(µ) = 1T
n

(
µI − A(G)

)−11n, where 1n denote the all-one column vector
of size n.

The above definition can be generalized for any graph matrix M .

Definition 2.2. [4] Let M be an n × n matrix associated with a graph G on n vertices. The
M -coronal ΓM (µ) is defined as ΓM (µ) = 1Tn

(
µI −M

)−11n.

Proposition 2.3. [4] Let M be an n × n graph matrix associated with G. If each row sum of M
is s, then ΓM (µ) =

n

µ− s
.
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Theorem 2.1. [6] Let G be an r-regular graph on n vertices with Spec(G) = {r, µ2(G), . . . , µn(G)}.
Then Spec(L(G)) consists of µj(G) + r − 2, j = 1, . . . , n, each with multiplicity 1 and −2 with
multiplicity n

(
r
2 − 1

)
.

Theorem 2.2. [6] Let G be an r-regular graph on n vertices with Spec(G) = {r, µ2(G), . . . , µn(G)}.
Then the complement G has the adjacency spectrum Spec(G) = {n−r−1,−(µ2(G)+1), . . . ,−(µn(G)+
1)}.

Theorem 2.3. [28] Let G and G′ be r-regular graphs on n vertices. Then Lm(G) and Lm(G′),
m ≥ 1, have the same order and size. Moreover, Lm(G) and Lm(G′) are cospectral if and only if
G and G′ are cospectral.

Definition 2.3. [23] The strong double graph D∗
2(G) of a graph G is the graph formed by taking

two copies of G say G1 and G2 and joining each vertex u1 in G1 to the corresponding vertex u2 in
G2 and also to the neighbours of u2.

Theorem 2.4. [23] Let G be a graph with Spec(G) = {µ1(G), . . . , µn(G)}. Then Spec(D∗
2(G))

consists of 2µ1(G) + 1, . . . , 2µn(G) + 1, each with multiplicity 1 and −1 with multiplicity n.

3. THE RECIPROCAL DISTANCE SPECTRUM OF G▼H

Theorem 3.5. Let G be an r-regular graph with Spec(G) = {r, µ2(G), . . . , µn(G)} and H be a
graph of order p. Then Φ

(
RD(G▼H);x

)
=

Φ

(
5

6
J +

2

3
A(H);x− 1

6

)
·

(
x− 1

2
(r − 1)− n

(
5

6
+

9

4
Γ 5

6J+
2
3A(H)(x− 1/6)

))
·

Φ

(
1

6
J +

1

3
A(H);x+

7

6

)
·

(
x− 1

2
(r − 1)− n

(
1

6
+

1

4
Γ 1

6J+
1
3A(H)(x+ 7/6)

))
·

n∏
j=2

(
x− 1

2

(
µj(G)− 1

))2

.

Proof. Arranging the vertices in proper way, RD(G▼H) has the form

RD(G▼H) =
1
2

(
J − I +A(G)

)
Jn×p

1
3Jn×n

1
2Jn×p

Jp×n
1
2

(
J − I +A(H)

)
1
2Jp×n

1
3

(
J + 2I + 1

2A(H)
)

1
3Jn×n

1
2Jn×p

1
2

(
J − I +A(G)

)
Jn×p

1
2Jp×n

1
3

(
J + 2I + 1

2A(H)
)

Jp×n
1
2

(
J − I +A(H)

)
 ,

which is a 2× 2 block symmetric matrix of the form[
P1 P2

P2 P1

]
,

where

P1 =

 1
2

(
J − I +A(G)

)
Jn×p

Jp×n
1
2

(
J − I +A(H)

)


and

P2 =

 1
3Jn×n

1
2Jn×p

1
2Jp×n

1
3

(
J + 2I + 1

2A(H)
)
 .

By proposition 2.2, the RD-spectrum of G▼H is the set of eigenvalues of P1 +P2 together
with those of P1 − P2. By proposition 2.1,
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Φ(P1 + P2;x) = det
((

x− 1
6

)
I −

(
5
6J + 2

3A(H)
))

·

det

((
x+ 1

2

)
I −

(
5
6J + 1

2A(G)
)
− 9

4Jn×p

(
(x− 1

6 )I −
(
5
6J + 2

3A(H)
))−1

Jp×n

)
.

By definition 2.2,

Jn×p

(
(x− 1

6 )I −
(
5
6J + 2

3A(H)
))−1

Jp×n = Γ 5
6J+

2
3A(H)(x− 1/6)Jn×n.

Therefore,

Φ(P1 + P2;x) =

Φ

(
5

6
J +

2

3
A(H);x− 1

6

)
·

(
x− 1

2
(r − 1)− n

(
5

6
+

9

4
Γ 5

6J+
2
3A(H) (x− 1/6)

))
·

n∏
j=2

(
x− 1

2

(
µj(G)− 1

))
.

Proceeding in the same way, we obtain

Φ(P1 − P2;x) =

Φ

(
1

6
J +

1

3
A(H);x+

7

6

)
·

(
x− 1

2
(r − 1)− n

(
1

6
+

1

4
Γ 1

6J+
1
3A(H) (x+ 7/6)

))
n∏

j=2

(
x− 1

2

(
µj(G)− 1

))
.

Then the result follows since Φ(RD(G▼H);x) = Φ(P1 + P2;x) · Φ(P1 − P2;x). □

Corollary 3.1. Let G be an r-regular graph with Spec(G) = {r, µ2(G), . . . , µn(G)} and H be
a k-regular graph with Spec(H) = {k, µ2(H), . . . , µp(H)}. Then the RD-eigenvalues of G▼H

are
1

2

(
µj(G)− 1

)
, j = 2, 3, . . . , n, each with multiplicity 2;

1

3

(
2µj(H) +

1

2

)
and

1

3

(
µj(H)− 7

2

)
, j = 2, 3, . . . , p; and the four numbers which are the

solutions of the equation

(3.5)

((
x+

1

2
− 5

6
n− 1

2
r

)(
x− 1

6
− 5

6
p− 2

3
k

)
− 9

4
np

)
·((

x+
1

2
− 1

6
n− 1

2
r

)(
x+

7

6
− 1

6
p− 1

3
k

)
− 1

4
np

)
= 0.

Proof. By theorem 3.5, we obtain directly that 1
2

(
µj(G)−1

)
, j = 2, 3, . . . , n are RD-eigenvalues

of G▼H , each with multiplicity 2.
Again by theorem 3.5, both

(3.6) Φ

(
5

6
J +

2

3
A(H);x− 1

6

)
=

(
x− 1

6
−
(
5

6
p+

2

3
k

))
·

p∏
j=2

(
x− 1

6
− 2

3
µj(H)

)
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and

(3.7) Φ

(
1

6
J +

1

3
A(H);x+

7

6

)
=

(
x+

7

6
−
(
1

6
p+

1

3
k

))
·

p∏
j=2

(
x+

7

6
− 1

3
µj(H)

)

are factors of the characteristic polynomial Φ
(
RD(G▼H);x

)
. Hence we get

1

3

(
2µj(H) +

1

2

)
and

1

3

(
µj(H)− 7

2

)
, j = 2, 3, . . . , p are also RD-eigenvalues of G▼H .

Now, each row sum of the matrices
5

6
J+

2

3
A(H) and

1

6
J+

1

3
A(H) are respectively

5

6
p+

2

3
k

and
1

6
p+

1

3
k. Then by proposition 2.3,

(3.8) Γ 5
6J+

2
3A(H) (x− 1/6) =

p

x− 1
6 −

(
5
6p+

2
3k
)

and

(3.9) Γ 1
6J+

1
3A(H) (x+ 7/6) =

p

x+ 7
6 −

(
1
6p+

1
3k
)

Substituting (3.8) and (3.9) in the expression for Φ
(
RD(G▼H);x

)
in theorem 3.5 and us-

ing (3.6) and (3.7) we obtain the remaining four RD-eigenvalues as the solutions of the
biquadratic equation (3.5). □

Example 3.1. We know that Spec(C4) = {−2, 02, 2} and Spec(P2) = {−1, 1}. Therefore RD-
spectrum of C4▼P2, shown in figure 1 is
SpecRD(C4▼P2) =

{(−3
2

)3
,
(−1

2

)5
, 1
3 +

√
97
6 , 1

3 −
√
97
6 , 19

6 +
√
166
3 , 19

6 −
√
166
3

}
4. RD-EQUIENERGETIC GRAPHS

We construct infinitely many pairs of RD-non-cospectral and RD-equienergetic graphs
of diameter 3 using corollary 3.1.

In the subsequent theorems in this section, we use the notation

SH =
1

3

p∑
j=2

∣∣∣∣2µj(H) +
1

2

∣∣∣∣+ 1

3

p∑
j=2

∣∣∣∣µj(H)− 7

2

∣∣∣∣.
Theorem 4.6. Let G and G′ be r-regular non-cospectral graphs on n vertices and H be a k-regular
graph on p vertices. Suppose that µn(G), µn(G

′) ≥ 3 − r. Then L(G)▼H and L(G′)▼H form
RD-non-cospectral and RD-equienergetic graphs.

Proof. By corollary 3.1 and theorem 2.1, we obtain the RD-eigenvalues of L(G)▼H as

1

2
(µj(G) + r − 3), with multiplicity 2, j = 2, 3, . . . , n;

− 3

2
, with multiplicity n(r − 2);

1

3

(
2µj(H) +

1

2

)
, j = 2, 3, . . . , p;

1

3

(
µj(H)− 7

2

)
, j = 2, 3, . . . , p;
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and four more numbers that are the solutions of the equation

(4.10)

((
x− 5

12
nr − r +

3

2

)(
x− 5

6
p− 2

3
k − 1

6

)
− 9

8
nrp

)
·((

x− 1

12
nr − r +

3

2

)(
x− 1

6
p− 1

3
k +

7

6

)
− 1

8
nrp

)
= 0,

In the same way, we obtain the reciprocal distance eigenvalues of L(G′)▼H and we
can see that L(G)▼H and L(G′)▼H are RD-non-cospectral. Since the solutions of (4.10)
depend only on the parameters n, r, p and k, let us denote the sum of the absolute values
of the solutions as f(n, r, p, k). Then

(4.11) RDE
(
L(G)▼H

)
=

n∑
j=2

∣∣µj(G) + r − 3
∣∣+ 3n

(r
2
− 1
)
+ SH + f(n, r, p, k).

Since µn(G) ≥ 3 − r, we have µj(G) + r − 3 ≥ 0 for j = 2, 3, . . . , n. Then from equation
(4.11),

RDE
(
L(G)▼H

)
=

5

2
nr − (6n+ 2r − 3) + SH + f(n, r, p, k).

By the same set of arguments, we can compute the reciprocal distance energy of L(G′)▼H .
We can observe that RDE

(
L(G)▼H

)
= RDE

(
L(G′)▼H

)
. □

FIGURE 2. Non-isomorphic 4-regular graphs on 8 vertices

Example 4.2. Consider the graphs G1 and G2 in figure 2. Let G = L(G1), G
′ = L(G2) and

H = C4. Then Spec(G) = {(−2)8,−
√
3+1, 0, 2−

√
2, 22,

√
3+1, 2+

√
2, 6} and Spec(G′) =

{(−2)8, 1−
√
5, 0, 24, 1+

√
5, 6}. Note that µ16(G), µ16(G

′) > −3. Then SpecRD(L(G)▼H) ={(−3
2

)64
,
(
1
2

)16
,
(
2−

√
3
2

)2
,
(
3
2

)2
,
(

5−
√
2

2

)2
,
(
5
2

)4
,
(
2 +

√
3
2

)2
,
(

5+
√
2

2

)2
,
(
1
6

)2
,
(
− 7

6

)3
,

− 11
6 , 74

3 +
√
29713
6 , 74

3 −
√
29713
6 , 19

3 +
√
3097
6 , 19

3 −
√
3097
6

}
and SpecRD(L(G′)▼H) =

{(−3
2

)64
,(

1
2

)16
,
(
2−

√
5
2

)2
,
(
3
2

)2
,
(
5
2

)8
,
(
2 +

√
5
2

)2
,
(
1
6

)2
,
(
− 7

6

)3
,− 11

6 , 74
3 +

√
29713
6 , 74

3 −
√
29713
6 ,

19
3 +

√
3097
6 , 19

3 −
√
3097
6

}
. We get RDE

(
L(G)▼H

)
= 135 + 1

3

(
17 +

√
29713 +

√
3097

)
=

RDE
(
L(G′)▼H

)
.

Theorem 4.7. Let G and G′ be r-regular non-cospectral graphs on n vertices. Let H be a k-regular
graph of order p. Then
(a) L2(G)▼H and L2(G′)▼H form RD-non-cospectral and RD-equienergetic graphs if r ≥ 4.
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(b) Lm(G)▼H and Lm(G′)▼H form RD-non-cospectral and RD-equienergetic graphs for m ≥
3 if r ≥ 3.

Proof. The eigenvalues of Lm(G),m ≥ 2, obtained by repeatedly applying theorem 2.1, m
times are as follows.

(4.12)

µj(G) +
(
2m − 1

)(
r − 2

)
, j = 1, 2, . . . , n,(

2m − 2
)
r − 2

(
2m − 1

)
, with multiplicity n

(r
2
− 1
)
,(

2m − 2j
)
r − 2

(
2m − 2j + 1

)
, with multiplicity Mj , j = 2, 3, . . . ,m,

where Mj =
n(r − 2)

2

j−2∏
l=0

(2lr − 2l+1 + 2).


By corollary 3.1, the RD-eigenvalues of Lm(G)▼H,m ≥ 2, are the following.

1

2

(
µj(G) + (2m − 1)(r − 2)− 1

)
, j = 2, 3, . . . , n, with multiplicity 2;

1

2

(
(2m − 2)(r − 2)− 3

)
, with multiplicity n(r − 2);

1

2

(
(2m − 2j)(r − 2)− 3

)
, with multiplicity 2Mj , j = 2, 3, . . . ,m;

1

3

(
2µj(H) +

1

2

)
, j = 2, 3, . . . , p;

1

3

(
µj(H)− 7

2

)
, j = 2, 3, . . . , p;

and four more numbers satisfying the equation, obtained by replacing n and r by nm

and rm respectively, given by equations (1.3) and (1.4), in equation (3.5); and denote its
solutions by xj , j = 1, 2, 3, 4. Let f1(n, r, p, k) =

∑4
j=1 |xj |.

Since µj(G) ≥ −r for j = 2, 3, . . . , n, we have

µj(G) + (2m − 1)(r − 2)− 1 ≥ (2m − 2)(r − 2)− 3.

(a) For m = 2, µj(G) + (2m − 1)(r − 2)− 1 ≥ 2r − 7 > 0 since r ≥ 4. Therefore

RDE
(
L2(G)▼H

)
=

n∑
j=2

(
µj(G) + 3r − 7

)
+ n

(r
2
− 1
)
(2r − 7)+

3

2
nr(r − 2) + SH + f1(n, r, p, k)

=
nr

2
(5r − 11)− 4r + 7 + SH + f1(n, r, p, k).

(b) For m ≥ 3 and r ≥ 3, (2m − 2)(r − 2)− 3 > 0.
Also for 2 < j < m, (2m−2j)(r−2)−3 > 0 and the case j = m yields −3, independent
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of r. Thus

RDE
(
Lm(G)▼H

)
=

n∑
j=2

(
µj(G) +

(
2m − 1

)(
r − 2

)
− 1
)
+

n
(r
2
− 1
)((

2m − 2
)(
r − 2

)
− 3
)
+

m−1∑
j=2

Mj

((
2m − 2j

)(
r − 2

)
− 3
)
+ 3Mm+

SH + f1(n, r, p, k)

=
(
2m−1 − 1

)
nr2 +

(n
2

(
3− 2m+1

)
− 2m

)
r+

2m+1 − 1 +

m−1∑
j=2

Mj

(
(2m − 2j)(r − 2)− 3

)
+

3Mm + SH + f1(n, r, p, k).

By employing the same arguments we can compute the reciprocal distance spectrum of
Lm(G′)▼H , m ≥ 2 and its energy. Evidently the graphs are RD-non-cospectral. In both
cases RDE

(
Lm(G)▼H

)
= RDE

(
Lm(G′)▼H

)
. □

Example 4.3. Consider the 4-regular non-cospectral graphs G1 and G2 in figure 2 and let H =

C4. From example 4.2, RDE
(
L2(G1)▼H

)
= 135+ 1

3

(
17+

√
29713+

√
3097

)
= RDE

(
L2(G2)▼H

)
.

Example 4.4. Let G be the Petersen graph and G′ = C5□P2, where □ denotes the Cartesian prod-
uct of graphs, and H = P2. Then SpecRD(L2(G)▼H) =

{(−3
2

)31
,
(−1

2

)11
, 08,

(
3
2

)10
, 15 +

√
1165
2 , 15−

√
1165
2 , 7

2 +
√
31, 7

2 −
√
31
}
, SpecRD(L2(G′)▼H) =

{(−3
2

)31
,
(−1

2

)11
,
(

1−
√
5

4

)4
,(

5−
√
5

4

)4
,
(

1+
√
5

4

)4
,
(
3
2

)2
,
(

5+
√
5

4

)4
, 15 +

√
1165
2 , 15−

√
1165
2 , 7

2 +
√
31, 7

2 −
√
31
}
,

SpecRD(L3(G)▼H) =
{(−3

2

)121
,
(
1
2

)30
,
(
3
2

)10
, 28,

(
7
2

)10
, −1

2 , 41 +
√
7549
2 , 41−

√
7549
2 , 19

2 −
√
145, 19

2 +
√
145
}

and SpecRD(L3(G′)▼H) =
{(−3

2

)121
,
(
1
2

)30
,
(
3
2

)10
,
(

9−
√
5

4

)4
,
(

13−
√
5

4

)4
,(

9+
√
5

4

)4
,
(
7
2

)2
,
(

13+
√
5

4

)4
, −1

2 , 41 +
√
7549
2 , 41 −

√
7549
2 , 19

2 −
√
145, 19

2 +
√
145
}

. We get

RDE
(
L3(G)▼H

)
= 263 +

√
7549 + 2

√
145 = RDE

(
L3(G′)▼H

)
but, RDE

(
L2(G)▼H

)
̸=

RDE
(
L2(G′)▼H

)
.

Theorem 4.8. Let G and G′ be r-regular non-cospectral graphs on n vertices and H be a k-
regular graph of order p. Then Lm(G)▼H and Lm(G′)▼H form RD-non-cospectral and RD-
equienergetic graphs for all m ≥ 1.

Proof. Case 1: m = 1

By theorems 2.1, 2.2 and corollary 3.1, SpecRD(L(G)▼H) consists of the following.
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− 1

2
(µj(G) + r) , j = 2, 3, . . . , n, each with multiplicity 2;

0, with multiplicity n(r − 2);

1

3

(
2µj(H) +

1

2

)
, j = 2, 3, . . . , p;

1

3

(
µj(H)− 7

2

)
, j = 2, 3, . . . , p;

and four more numbers that are the solutions of the equation

(4.13)

((
x− 2

3
nr + r

)(
x− 5

6
p− 2

3
k − 1

6

)
− 9

8
nrp

)
·((

x− 1

3
nr + r

)(
x− 1

6
p− 1

3
k +

7

6

)
− 1

8
nrp

)
= 0,

obtained from equation(3.5), by replacing n and r by
nr

2
and

nr

2
− 2r + 1 respectively.

Proceeding in a similar manner, we obtain the RD-spectrum of L(G′)▼H . Observe that
L(G)▼H and L(G′)▼H are RD-non-cospectral.
Let yj , j = 1, 2, 3, 4 be the solutions of equation (4.13) and f2(n, r, p, k) =

∑4
j=1 |yj |. Then

using equation (1.2),

RDE
(
L(G)▼H

)
= 2× 1

2

n∑
j=2

∣∣µj(G) + r
∣∣+ n(r − 2)× 0 + SH + f2(n, r, p, k)

=

n∑
j=2

(
µj(G) + r

)
+ SH + f2(n, r, p, k)

= (n− 2)r + SH + f2(n, r, p, k).

By the same arguments applied above, we obtain the RD-energy of L(G′)▼H . We can
notice that RDE

(
L(G)▼H

)
= RDE

(
L(G′)▼H

)
.

Case 2: m ≥ 2
From the eigenvalues of Lm(G) given by (4.12) in theorem 4.7 and by theorem 2.2 and
corollary 3.1, the RD-eigenvalues of Lm(G)▼H are as follows.

− 1

2

(
µj(G) + (2m − 1)r − 2m+1 + 4

)
, j = 2, 3, . . . , n, each with multiplicity 2;

− 1

2

(
(2m − 2)(r − 2)

)
with multiplicity n(r − 2)

− 1

2
(2m − 2j)(r − 2), with multiplicity 2Mj , j = 2, . . . ,m;

1

3

(
2µj(H) +

1

2

)
, j = 2, 3, . . . , p;

1

3

(
µj(H)− 7

2

)
, j = 2, 3, . . . , p;

and four more numbers that are the solutions of the equation obtained by replacing n and
r by nm and nm−rm−1 in (3.5) of corollary 3.1; and denote its solutions by wj , j = 1, 2, 3, 4.
Let f3(n, r, p, k) =

∑4
j=1 |wj |.
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Clearly r ≥ 2. Now, µj(G)+ (2m− 1)r− 2m+1+4 = µj(G)+ r+(2m− 2)(r− 2) ≥ 0, since
m ≥ 2 and µj(G) ≥ −r. Also, (2m − 2j)(r − 2) > 0 for j = 1, 2, . . . ,m.

∴ RDE(Lm(G)▼H) =

n∑
j=2

(
µj(G) + r + (2m − 2)(r − 2)

)
+

n
(r
2
− 1
)
(2m − 2)(r − 2)+

m∑
j=2

Mj(2
m − 2j)(r − 2) + SH + f3(n, r, p, k)

= (n− 2)r +
1

2

(
n(r − 2) + 2

)
(r − 2)(2m − 2)+

m∑
j=2

Mj(2
m − 2j)(r − 2) + SH + f3(n, r, p, k).

Similarly we obtain the RD-spectrum and its energy of Lm(G′)▼H . Clearly RDE(Lm(G)▼H) =

RDE(Lm(G′)▼H). □

Example 4.5. Let G be the Petersen graph and G′ = C5□P2 and H = P2. We have SpecRD

(
L(G)▼H

)
=

{
010,

(−1
2

)9
, (−2)10, −3

2 , 39+
√
1921

4 , 39−
√
1921

4 , 13+
√
345

4 , 13−
√
345

4

}
, SpecRD

(
L(G′)▼H

)
={

010,
(

−3+
√
5

4

)4
,
(

−7+
√
5

4

)4
,
(

−3−
√
5

4

)4
, (−2)2,

(
−7−

√
5

4

)4
, −1

2 , −3
2 , 39+

√
1921

4 , 39−
√
1921

4 ,

13+
√
345

4 , 13−
√
345

4

}
, SpecRD

(
L2(G)▼H

)
=

{
030, (−1)10,

(−3
2

)9
, (−3)10, −1

2 , 77+
√
6649

4 ,

77−
√
6649

4 , 31+
√
1329

4 , 31−
√
1329

4

}
and SpecRD

(
L2(G′)▼H

)
=

{
030, (−1)10,

(
−7+

√
5

4

)4
,(

−11+
√
5

4

)4
,
(

−7−
√
5

4

)4
, (−3)2,

(
−11−

√
5

4

)4
, −1

2 , −3
2 , 77+

√
6649

4 , 77−
√
6649

4 , 31+
√
1329

4 , 31−
√
1329

4

}
.

Here we get RDE
(
L(G)▼H

)
= 26 + 1

2

(√
1921 +

√
345
)
= RDE

(
L(G′)▼H

)
and

RDE
(
L2(G)▼H

)
= 54 + 1

2

(√
6649 +

√
1329

)
= RDE

(
L2(G′)▼H

)
.

Theorem 4.9. Let G and G′ be r-regular, non-cospectral and equienergetic graphs of order n and
H be a k-regular graph of order p. Then D∗

2(G)▼H and D∗
2(G

′)▼H form RD-non-cospectral and
RD-equienergetic graphs.

Proof. By theorem 2.4 and corollary 3.1, SpecRD(D∗
2(G)▼H) consists of the following.

µj(G), j = 2, 3, . . . , n, each with multiplicity 2;

− 1 with multiplicity 2n

1

3

(
2µj(H) +

1

2

)
, j = 2, 3, . . . , p;

1

3

(
µj(H)− 7

2

)
, j = 2, 3, . . . , p;

and four more numbers that are the solutions of the equation obtained by replacing n and
r by 2n and 2r + 1 in (3.5) of corollary 3.1; and let vj , j = 1, 2, 3, 4 denote its solutions. Let
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f4(n, r, p, k) =
∑4

j=1 |vj |.

∴ RDE(D∗
2(G)▼H) =2

n∑
j=2

∣∣µj(G)
∣∣+ 2n+ SH + f4(n, r, p, k)

=2(E(G)− r) + SH + f4(n, r, p, k)

Since E(G) = E(G′), we have RDE(D∗
2(G)▼H) = RDE(D∗

2(G
′)▼H). □

Example 4.6. Let G = L(K3□P2) and G′ = L(K3,3). Then G and G′ are 4-regular graphs of
order 9. We have Spec(G) =

{
(−2)3, (−1)2, 12, 2, 4

}
and Spec(G′) =

{
(−2)4, 14, 4

}
. Clearly

E(G) = 16 = E(G′). We get SpecRD

(
D∗

2(G)▼P2

)
=

{
22, 14, (−1)22, (−2)6, −1

2 , −3
2 , 43+3

√
265

4 ,

43−3
√
265

4 , 13+3
√
41

4 , 13−3
√
41

4

}
and SpecRD

(
D∗

2(G
′)▼P2

)
=

{
18, (−2)8, (−1)18, −1

2 , −3
2 ,

43+3
√
265

4 , 43−3
√
265

4 , 13+3
√
41

4 , 13−3
√
41

4

}
. Here RDE

(
D∗

2(G)▼P2

)
= 44 + 3

2

(√
265 +

√
41
)
=

RDE
(
D∗

2(G
′)▼P2

)
.

5. RD-COSPECTRAL GRAPHS

In this section, we construct infinitely many non-isomorphic pairs of RD-cospectral
graphs of diameter 3 as follows.

Theorem 5.10. Let G and G′ be non-isomorphic r-regular cospectral graphs on n vertices and H
be any graph. Then G▼H and G′▼H form non-isomorphic RD-cospectral graphs.

Proof. The result is straightforward from theorem 3.5. □

Corollary 5.2. Let G and G′ be non-isomorphic r-regular cospectral graphs on n vertices and H
be any graph. Then Lm(G)▼H and Lm(G′)▼H , m ≥ 1, form non-isomorphic RD-cospectral
graphs.

Corollary 5.3. Let G and G′ be non-isomorphic r-regular cospectral graphs on n vertices and H
be any graph. Then D∗

2(G)▼H and D∗
2(G

′)▼H form non-isomorphic RD-cospectral graphs.

Corollary 5.4. Let G and G′ be non-isomorphic r-regular cospectral graphs on n vertices and H

be any graph. Then G▼H and G′▼H form non-isomorphic RD-cospectral graphs.

Corollary 5.5. Let G and G′ be non-isomorphic r-regular cospectral graphs on n vertices and H

be any graph. Then Lm(G)▼H and Lm(G′)▼H , m ≥ 1, form non-isomorphic RD-cospectral
graphs.

Corollary 5.6. Let G and G′ be non-isomorphic r-regular cospectral graphs on n vertices and H

be any graph. Then D∗
2(G)▼H and D∗

2(G
′)▼H form non-isomorphic RD-cospectral graphs.

Theorem 5.11. Let H and H ′ be non-isomorphic k-regular cospectral graphs on p vertices and G
be any regular graph. Then G▼H and G▼H ′ form non-isomorphic RD-cospectral graphs.

Proof. The result follows immediately from corollary 3.1. □

The following corollary can be directly inferred from the preceding theorem.

Corollary 5.7. Let H and H ′ be non-isomorphic k-regular cospectral graphs on p vertices and G
be a regular graph. Then
(a) G▼H and G▼H ′ form non-isomorphic RD-cospectral graphs.
(b) G▼L(H) and G▼L(H ′) form non-isomorphic RD-cospectral graphs.
(c) G▼Lm(H) and G▼Lm(H ′),m ≥ 1, form non-isomorphic RD-cospectral graphs.
(d) G▼D∗

2(H) and G▼D∗
2(H

′) form non-isomorphic RD-cospectral graphs.
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6. CONCLUSION

Indu-Bala product, a novel graph product, has attracted many researchers in the field
of domination, spectral graph theory, topological indices, metric dimension, and more.
The RD-spectrum of Indu-Bala product was unknown and in our work the problem of
RD-spectrum of Indu-Bala product of regular graphs is settled. In addition, using this
result, we have constructed pairs of RD-equienergetic graphs as well as RD-cospectral
graphs of diameter 3.
In [15] the authors constructed a pair of distance equienergetic graphs on 18 + 2k, k ≥
1 vertices. We have generalized similar constructions to produce many pairs of RD-
equienergetic graphs. In future work, we aim to extend this study to other graph classes
beyond regular graphs.

Acknowledgment: The authors sincerely thank the referees for their valuable sugges-
tions, which have significantly enhanced the quality and clarity of this article.
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