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Some new results on WS-algebras

DANIEL A. ROMANO

ABSTRACT. The concept of WS-algebras was introduced in 2008 by K. J. Lee, J. B. Young and H. Kim where
some important basic properties of this class of algebras are given. In this paper, some other important properties
of WS-algebras are registered and, in addition, some types of ideals in such algebras are discussed. Also, some
information about atoms in this class of algebra is offered.

1. INTRODUCTION

The concept of subtraction algebras appeared in 1995 in [8], written by Zelinka. The
concept of weak subtraction algebras appeared in 2008 in [4] written by K. J. Lee, J. B.
Young and H. Kim. This class of logical algebras has rarely been the subject of research
interest since then. There is a well-known paper [2] written by Y. B. Jun, C. H. Park and
E. H. Roh in which ideals in WS-algebras were discussed, as well as a paper [6] in which
connections of this class of algebras with some other known algebras were treated. In
articles [1] and [5], the subject of research is soft WS-algebras.

In this article, besides adding some new properties to this class of logical algebras, dis-
cussing ideals, we introduce and analyze p-ideals and implicative ideals in WS-algebras.
Also, discussing the extension of the WS-algebra to the WS-algebra by adding one ele-
ment, we register some properties of the atoms in these algebras. The paper is designed
as follows: In the Preliminaries section, we give the necessary terms and their interrela-
tionships so that the material presented in Section 3, the main part of this report, would
be readable for the reader. Section 3 has three subsections. In the first of them, some
additional properties about WS-algebras that are not present in the available sources are
registered. The second subsection discusses the concept of ideals in this class of algebras.
Thus, some newly observed properties of ideals are registered (Theorem 3.4). In addition,
two new classes of ideals are recognized: p-ideals (Definition 3.1) and implicative ideals
(Definition 3.2). In subsection 3.3, an extension of a WS-algebra A = (A, ·, 1) to the WS-
algebra B = (A ∪ {a}, ∗, 1) is designed by adding an element (Theorem 3.7) so that the
newly created algebra has an atom in it. Further on, some properties of atoms in WS-
algebras are studied. Thus, some properties of atoms in WS-algebras have been identified
and a criterion for recognizing atoms in such algebras has been found.

2. PRELIMINARIES

The concept of subtraction algebras appears in 1995 in [8], written by Zelinka. An
algebra (A, ·, 1) is a subtraction algebra (shortly, S-algebra) if it satisfies the following con-
ditions

(Re) (∀x ∈ A)(x · x = 1),
(Im) (∀z, y ∈ A)(x · (y · x) = x),
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(S2) (∀x, y ∈ A)(x · (x · y) = y · (y · x)),
(Ex) (∀x, y, z ∈ A)((x · y) · z = (x · z) · y).

We note that condition (S2), in this terminology, is recognized as the commutativity con-
dition of logical algebras. In [7] it was shown that condition (Re) can be demonstrated
from the remaining conditions. Also, it was shown that:

- an S-algebra is equivalent to an implicative BCK-algebra. ([3], Theorem 2)
- a dual S-algebra (in the standard sense, x∗y =: y ·x for any x, y ∈ A) is a commutative

self-distributive BE-algebra. ([6], Theorem 4.4)
- a dual S-algebra is a commutative Hilbert algebra. ([6], Corollary 4.5)
The concept of weak subtraction algebras (shortly, WS-algebras) appeared in 2008 in

[4] written by K. J. Lee, J. B. Young and H. Kim. By a weak subtraction algebra (shortly,
WS-algebra), we mean a triplet A =: (A, ·, 1) which satisfies the following axioms:

(Re) (∀x ∈ A)(x · x = 1),
(M) (∀x ∈ A)(x · 1 = x),
(Ex) (∀x, y, z ∈ A)((x · y) · z = (x · z) · y),
(DR) (∀x, y, z ∈ A)((x · y) · z = (x · z) · (y · z)).

We denote this axiomatic system by WS and the corresponding algebraic structure, deter-
mined by it, by WS-algebra. The algebra ({1}, ·, 1) is a trivial WS-algebra. Of course, as it
was shown in [4], Theorem 3.6, every S-algebra is a WS-algebra, but the reverse need not
be the case ([6], Example 2.9). In addition, it was shown in [6] that:

- every commutative self-distributive BE-algebra is a dual WS-algebra.
- every Hilbert algebra is a dual WS-algebra.
- every Heyting algebra is a dual WS-algebra.
Some important properties of WS-algebra are given by the following proposition:

Proposition 2.1 ([4], Theorem 3.3). Let A =: (A, ·, 1) be a WS-algebra. Then:
(L) (∀x ∈ A)(1 · x = 1)

(2) (∀x, y ∈ A)((x · y) · x = 1)

(3) (∀x, y ∈ A)(x · y = 1 =⇒ (x · z) · (y · z) = 1).

Example 2.1. Let A = {1, a, b, c, d} and operation ’·’ defined on A as follows:
· 1 a b c d
1 1 1 1 1 1
a a 1 1 1 1
b b b 1 b b
c c c c 1 c
d d d d d 1

Then A = (A, ·, 1) is a WS-algebra ([2], Example 4.2(3)) but it is not a subtraction algebra because,
for example, a · (b · a) = a · b = 1 ̸= a holds.

3. THE MAIN RESULTS

3.1. Some basic properties of WS-algebras. If we define the relation ≼ on a WS-algebra
A =: (A, ., 1) as follows

(∀x, y ∈ A)(x ≼ y ⇐⇒ y · x = 1),

it was shown ([4], Proposition 3.8) that this relation is a quasi-order relation on A (reflexive
and transitive relation) compatible with the operation in A. Due to the consistency of the
material presented in this report, we present the proof of this claim here:
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Proposition 3.2. The relation ≼, determined as above, on a WS-algebra A =: (A, ·, 1) is a quasi-
ordered on A comparable with the operation in A in the following sense:

(4) (∀x, y, z ∈ A)(x ≼ y =⇒ x · z ≼ y · z),
(5) (∀x, y, z ∈ A)(x ≼ y =⇒ z · x ≼ z · y).

Proof. The relation ≼ is reflexive due to (Re).
To prove transitivity, suppose that x, y, z ∈ A are arbitrary elements such that x ≼ y

and y ≼ z. This means y · x = 1 and z · y = 1. If we put x = z and z = x in (3), we get

1 = z · y =⇒ 1 = (z · x) · (y · x) = (z · x)1 = z · x.
Thus z · x = 1 which means x ≼ z.

Let x, y, z ∈ A be arbitrary elements such that x ≼ y. This means y · x = 1. Thus
(y · z) · (x · z) = 1 according to (3). Hence, x · z ≼ y · z.

Let x, y, z ∈ A be arbitrary elements such that x ≼ y. This means y · x = 1. Then
(y · x) · z = 1 · z = 1 by (L). On the other hand, by (DR), we have (y · z) · (x · z) = 1. So,
x · z ≼ y · z. □

Example 3.2. Let A = {1, a, b, c, d} as in Example 2.1. The relation ≼ is given by ≼= {(1, 1),
(a, 1), (b, 1), (c, 1), (d, 1), (a, a), (b, a), (c, a), (d, a), (b, b), (c, c), (d, d)}.

Note here that, analogously to Proposition 3.4 in [4], it can be shown that if a WS-
algebra A = (A, ·, 1) satisfies the additional condition

(⋆) (∀x, y ∈ A)(x · (x · y) = y · (y · x)),
then ≼ is an antisymmetric relation. An example of such a WS-algebra satisfying the
condition (⋆) is the algebra in Example 2.1 However, in the general case, a WS-algebra
cannot satisfy the condition (⋆), as the following example shows.

Example 3.3. Let A = {1, a, b, c} and operation ’·’ defined on A as follows:

· 1 a b c
1 1 1 1 1
a a 1 a a
b b b 1 1
c c c 1 1

Then A = (A, ·, 1) is a WS-algebra ([4], Example 3.2) but which does not satisfy the condition (⋆)
because, for example, we have b · (b · c) = b · 1 = b ̸= c = c · 1 = c · (c · b).

In addition to the above, this relation also has the following characteristics:

Proposition 3.3. Let A = (A, ·, 1) be a WS-algebra. Then:
(6) (∀x ∈ A)(x ≼ 1),
(7) (∀x, y, z ∈ A)(z ≼ x · y ⇐⇒ y ≼ x · z),
(8) (∀x, y ∈ A)(x ≼ x · y),
(9) (∀x, y ∈ a)(y ≼ x · (x · y)).
(10) (∀x, y, z ∈ A)(x · y ≼ (x · z) · (y · z)).

Proof. The validity of (6) follows from the validity of formula (L).
(7) is obtained directly from (Ex).
(8) can be obtained from (2).
(9) Since for arbitrary x, y ∈ A we have (x · y) · (x · y) = 1 according to (Re), from here,

in accordance with (Ex), we get (x · (x · y)) · y = 1 which gives (9).
(10) For arbitrary x, y, z ∈ A, according to (8), we have x ≼ x · z ≼ (x · z) · (y · z). □
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In what follows, we base ourselves on the following statements: Let A = (A, ·, 1) be
a WS-algebra. A quasi-order relation ≼ on a set A generates the equivalence relation
≡≼ =:≼ ∩ ≼−1 on A. Due to properties (4) and (5), this equivalence is a congruence on
A. According to what was shown in Theorem 3.10 in article [4], for any congruence q on
the WS-algebra A one can design a quotient WS-algebra A/q = (A/q, ∗[1]q). So, A/ ≡≼ is
a WS-algebra.

Also, we have:

Theorem 3.1. Let A = (A, ·, 1) a WS-algebra. Then:
(a) (∀x, y ∈ A)((x · y) · y = x · y)
(b) (∀x, z ∈ A)((x · z) · (y · z) = (x · y) · (z · y))

Proof. (a) If we put z = y in (DR), we get

(x · y) · y = (x · y) · (y · y) = (x · y) · 1 = x · y

according to (Re) and (M).
(b) If (Ex) and (DR) are combined, we get (b) □

In what follows, the following lemma is important:

Lemma 3.1. Let A =: (A, ·, 1) be a WS-algebra. Then, A satisfies the condition

(∀x, y, z ∈ A)(x · (y · z) = y · (x · z))

if and only if A satisfies the condition (∀x, y ∈ A)(x · y = y · x).

Proof. Suppose that a WS-algebra A satisfies the condition x ·(y ·z) = y ·(x ·z) for arbitrary
elements x, y, z ∈ A. If we choose z = 1, from this formula we get x · y = y ·x with respect
to (M). Conversely, suppose that x · y = y · x is valid for arbitrary x, y, z ∈ A. We have
x · (y · z) = x · (z · y) = (z · y) · x = (z · x) · y = y · (z · x) = y · (x · z). □

However, we have:

Theorem 3.2. A non-trivial WS-algebra A =: (A, ·, 1) cannot satisfy the condition

(∀x, y, z ∈ A)(x · (y · z) = y · (x · z)).

Proof. Assume that the non-trivial WS-algebra A =: (A, ·, 1) satisfies the mentioned condi-
tion. Then, for arbitrary x, y, z ∈ A, we would have (x·y)·z = z·(x·y) = x·(z·y) = (z·y)·x =
(z ·x) ·y. From here, for x = y = 1, we would get 1 = 1 ·z = (1 ·1) ·z = (z ·1) ·1 = z ·1 = z,
that is, with respect to (Re) , (L) and (M), we would get 1 = 1 ·z = z which is contradictory
to (L). The resulting contradiction refutes the assumption. □

3.2. On ideals in WS-algebras. The concept of ideals in WS-algebras is introduced in [2],
Definition 3.1, as follows:

Let A = (A, ·, 1) be a WS-algebra. A non-empty subset J of A is an ideal in A if it
satisfies:

(J1) 1 ∈ J ,
(J2) (∀z, y ∈ A)((x · y ∈ J ∧ y ∈ J) =⇒ x ∈ J).

Theorem 3.3. Let A = (A, ·, 1) be a WS-algebra and let J be a subset of A satisfying the condition
(J1). Then the condition (J2) is equivalent to the condition

(J3) (∀x, y, z ∈ A)(((x · y) · z ∈ J ∧ y ∈ J) =⇒ x · z ∈ J).
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Proof. If we put x = x · z in (J2), and replace (x · z) · y ∈ J with (x · y) · z ∈ J (which is
allowed because of (Ex)), we get (J3).

The validity of the formula (J2) is obtained from the validity of the formula (J3) if we
choose z = 1 with respect to (M). □

Theorem 3.4. For an ideal J in a WS-algebra A = (A, ·, 1) holds:
(J4) (∀x, y ∈ A)((x ∈ J ∧ x ≼ y) =⇒ y ∈ J).
(J5) (∀y, z ∈ A)(y ∈ J =⇒ y · z ∈ J).
(J6) (∀x, y ∈ A)((x /∈ J ∧ y ∈ J) =⇒ x · y /∈ J).

Proof. Let x, y ∈ A be arbitrary elements such that x ∈ J and x ≼ y. This means x ∈ J and
y · x = 1 ∈ J . Thus y ∈ J by (J2).

Let J be an ideal in a WS-algebra A. So, (J3) is a valid formula in A. If we put x = y in
(J3), we get (J5) using (Re) and (L).

Let x, y ∈ J be such that x /∈ J and y ∈ J . Since the contraposition of (J2) is x /∈
J =⇒ (y /∈ J ∨ x · y /∈ J), we conclude that it must be x · y /∈ J because y ∈ J is an
assumption. □

Example 3.4. Let A = {1, a, b, c, d} as in Example 2.1. Subsets J0 = {1}, J1 = {1, a}, J2 =
{1, a, b}, J3 = {1, a, c}, J4 = {1, a, d}, J5 = {1, a, b, c}, J6 = {1, a, b, d} and J7 = {1, a, c, d}
are ideals in A. However, the subsets B = {1, b, c}, C = {1, b, d}, D = {1, c, d} and E =
{1, b, c, d} are not ideals in A.

Let us recall that the concept of subalgebra in WS-algebras is introduced in a standard
way: A nonempty subset S of a WS-algebra A is a subalgebra in A if and only if

(S2) (∀x, y ∈ A)((x ∈ S ∧ y ∈ S) =⇒ x · y ∈ S) holds.
It can be easily concluded that any subalgebra in a WS-algebra A satisfies the condition

(S1) 1 ∈ S.
Assertion (J5) of the previous theorem allows us to state an important consequence about
ideals in WS-algebras.

Corollary 3.1. Every ideal in a WS-algebra A is a subalgebra in A.

The converse statement need not be valid as the following example shows.

Example 3.5. Let A = {1, a, b, c, d} as in Example 2.1. The subset B = {1, b, c} in a WS-algebra
A = (A, ·, 1) is a subalgebra in A but it is not an ideal in A (see Example 3.4)

The concept of p-ideals in WS-algebras is introduced in the standard way:

Definition 3.1. Let A = (A, ·, 1) be a WS-algebra. A non-empty subset J of A is a p-ideal in A
if the following holds:

(J1) 1 ∈ J ,
(J7) (∀x, y, z ∈ A)(((x · z) · (y · z) ∈ J ∧ y ∈ J) =⇒ x ∈ J).

Example 3.6. Let A = {1, a, b, c, d} as in Example 2.1. Then A = (A, ·, 1) is a WS-algebra. Ideal
J2 = {1, a, b} is a p-ideal in A.

Theorem 3.5. Let A = (A, ·, 1) be a WS-algebra. Any p-ideal in the WS-algebra A is an ideal in
A.

Proof. If we put z = 1 in (J7), we get (J2). □



94 D. A. Romano

However, every deal in a WS-algebra A need not be a p-ideal in A, as the following
example shows:

Example 3.7. Let A = {1, a, b, c, d} as in Example 2.1. Then A = (A, ·, 1) is a WS-algebra. The
ideal J3 = {1, a, c} in A is not a p-ideal in A because, for example, we have (d · c) · (a · c) = d ·1 =
1 ∈ J and a ∈ J but d /∈ J .

We also introduce the concept of implicative ideals in a WS-algebra in the standard
way:

Definition 3.2. Let A = (A, ·, 1) be a WS-algebra. A non-empty subset J of A is an implicative
ideal in A if the following holds:

(J1) 1 ∈ J ,
(J8) (∀x, y, z ∈ A)((x · y) · z ∈ J ∧ y · z ∈ J) =⇒ x · z ∈ J).

Proposition 3.4. Let J be an implicative ideal in a WS-algebra A. Then
(J9) (∀x, y ∈ A)((x · y) · y ∈ J =⇒ x · y ∈ J).

Proof. If we put z = y in (J8), we obtain (J9) with respect to (Re) and (J1). □

Theorem 3.6. Any implicative ideal in a WS-algebra A is an ideal in A.

Proof. Let J be an implicative ideal in a WS-algebra A and let x, y ∈ A be such that x·y ∈ J
and y ∈ J . Then (x · y) · 1 = x · y ∈ J and y · 1 = y ∈ J in accordance with (M). Thus
x = x · 1 ∈ J by (J9). So, J is an ideal in A. □

Example 3.8. Let A = {1, a, b, c, d} as in Example 2.1. Then A = (A, ·, 1) is a WS-algebra. The
ideal J4 = {1, a, d} is an implicative ideal in A.

However, every ideal in a WS-algebra A need not be an implicative ideal in A as the
following example shows:

Example 3.9. Let A = {1, a, b, c, d} as in Example 2.1. Then A = (A, ·, 1) is a WS-algebra. The
ideal J0 = {1} is not an implicative ideal in A because, for example, we have (b · a) · a = a · a =
1 ∈ J0 but b · a = a /∈ J0.

3.3. Extension of a WS-algebra to the WS-algebra by adding one element. In [4], The-
orem 3.13, a procedure for constructing a WS-algebra based on a given quasi-ordered set
was created.

Proposition 3.5. Let (X,≼) be a quasi-ordered set and a /∈ X . If we put Y = X∪{a} and define
the operation ∗ on Y as follows x ∗ y =: a if x ≼ y and x ∗ y =: x in other cases, then (Y, ∗, a) is
a WS-algebra.

The following example illustrates the previous proposition where the elements of the
set A = {1, a, b, c} are not comparable. So, the order relation ≼ is given by

≼=: {(1, 1), (a, 1), (a, a), (b, 1), (b, b), (c, 1), (c, c)}.

Example 3.10. Let A = {1, a, b, c} and operation ’·’ defined on A as follows:

· 1 a b c
1 1 1 1 1
a a 1 a a
b b b 1 b
c c c c 1

Then A = (A, ·, 1) is a WS-algebra.
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In the following theorem, we give a construction extending the WS-algebra to the WS-
algebra by adding one element:

Theorem 3.7. Let (A, ·, 1) be a WS-algebra and let a /∈ A. If we define the operation ∗ on the set
B =: A ∪ {a} as follows

x ∗ y =



x · y for x ∈ A ∧ y ∈ A,
a for x = a ∧ y = 1,
1 for x = 1 ∧ y = a,
1 for x = a ∧ y = a,
a for x = a ∧ y ∈ A \ {1},
x for x ∈ A \ {1} ∧ y = a,

then (A ∪ {a}, ∗, 1) is a WS-algebra.

Proof. The proof of this theorem can be obtained by direct checking, putting the element a
once, twice or three times instead of the variables x, y and z in formulas (Ex) and (DR). □

One specificity of the WS-algebra created in this way should be noted. Namely, the
element a has the following property

(∀x ∈ A)(a ≼ x =⇒ (x = a ∨ x = 1)).

We recognize this property in any logical algebra A = (A, ·, 1) as an ’atom in the algebra
A’. We introduce such a determination in the present case, the WS-algebra case: For an
element a of the WS-algebra A = (A, ·, 1) we say that an atom is in A if it satisfies the
condition

(At) (∀x ∈ A)(a ≼ x =⇒ (x ≡≼ a ∨ x ≡≼ 1)).

We denote the set of all atoms in the WS-algebra A by L(A).

Example 3.11. (1) Let A = {1, a, b, c, d} be as in Example 2.1. Then A = (A, ·, 1) is a WS-
algebra. The element a is an atom in A.

(2) Let A = {1, a, b, c} be as in Example 3.3. Then A = (A, ·, 1) is a WS-algebra. The elements
a, b are atoms in A.

(3) Let A = {1, a, b, c} be as in Example 3.10. Then A = (A, ·, 1) is a WS-algebra. In this case,
all elements, except 1, are atoms of the WS-algebra A. Therefore, L(A) = A \ {1}.

Proposition 3.6. If for the element a of the WS-algebra A = (A, ·, 1), the subset {1, a} is an ideal
in A, then a is an atom in A.

Proof. Let the subset {1, a} be an ideal in a WS-algebra A, and let a ≼ x be valid. Then
x · a = 1 ∈ {1, a}. Thus x = 1 ∨ x = a since {1, a} is an ideal in A. So, the element a is an
atom in A. □

Also, the following applies:

Proposition 3.7. Let a be an atom in a WS-algebra A = (A, ·, 1). Then following holds:
(11) (∀y ∈ A)(a · y ≡≼ 1 ∨ a · y ≡≼ a),
(12) (∀x ∈ A)(a ≡≼ x · (x · a) ∨ x ≡≼ x · a).

Proof. If we put x = a in the valid formula (8), we get a ≼ a · y. Since a is an atom in A, it
must be a · y ≡≼ 1 or a · y ≡≼ a.

If we put y = a in the valid formula (9), we get a ≼ x · (x · a). Since a is an atom in A, it
must be x · (x · a) ≡≼ 1 or x · (x · a) ≡≼ a. Assume that x · (x · a) ≡≼ 1 holds. This means
x · a ≼ x. Then x · a ≼ x and x ≼ x · a by (8). Thus x ≡≼ x · a. □
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The converse of statement (12) also holds:

Theorem 3.8. If an element a of a WS-algebra A = (A, ·, 1) satisfies the condition (12), then a is
an atom in A.

Proof. Let the element a of a WS-algebra A = (A, ·, 1) satisfies the condition (12) and let
x ∈ A be such that a ≼ x. If x · (x · a) ≡≼ a holds, then we have x · (x · a) ≼ x. On the
other hand, according to (8), we have x ≼ x · (x · a). Therefore, x ≡≼ x · (x · a) ≡≼ a. If
x · (x · a) ≡≼ 1 holds, then we have xa ≼ x. On the other hand, according to (8), we have
x ≼ x · a. Therefore, x ≡≼ x · a = 1. □

Let us state some properties of the set L(A) of all atoms of the WS-algebra A = (A, ·, 1).

Theorem 3.9. Let A = (A, ·, 1) be a WS-algebra. Then:
(13) L(A) is an anti-chain.
(14) (L(A) ∪ {1})/ ≡≼ is a sub-algebra in A/ ≡≼.

Proof. Let a, b (̸= a) be atoms in a WS-algebra A. If there were a ≼ b, we would have
a ≡≼ b or b ≡≼ 1, which is impossible.

If a, b ∈ A are atoms in a WS-algebra A, then, according to (11), we have a · b ≡≼ 1 or
a · b ≡≼ a. How the first option, according to (13), it is not possible, it must be a · b ≡≼ a
which means that (L(A) ∪ {1})/ ≡≼ is a sub-algebra in A/ ≡≼. □

We end this subsection with a statement about the WS-algebra A = (A, ·, 1) whose
elements, except 1, are atoms of A.

Theorem 3.10. Let A = (A, ·, 1) be a WS-algebra whose elements, except 1, are atoms in A. Then
every sub-algebra in A is an ideal in A.

Proof. Let S be a sub-algebra in a WS-algebra A and let x, y ∈ A be such that x · y ∈ S and
y ∈ S. Since x, y are atoms in A, according to (11), we have x · y ≡≼ x because the option
x · y ≡≼ 1 is not possible according to (13). Therefore, x ≡≼ x · y ∈ S, which means that S
is an ideal in A. □

4. CONCLUSION

In a way, this paper is a continuation of research on WS-algebras started by reports [4],
[2] and [6]. In it, the author, besides describing some new properties of these algebras that
were not known before, discusses about ideals in WS-algebras and especially p-ideals and
implicative ideals in them. Additionally, apart from the previous one, the paper analyzes
the atoms of this class of logical algebras. What could be done in the future, as a continu-
ation of this research, is to register the existence and describe the properties of some other
types of ideals in WS-algebras.
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