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Nonassociative van der Waerden rings

JOHN LANTA

ABSTRACT. The notion of a compact van der Waerden ring is modified for hereditarily linearly compact rings
and a characterization of commutative hereditarily linearly compact metrizable van der Waerden rings is given.
It is introduced the notion of an alternative(Jordan) van der Waerden ring similarly to the notion of a compact
associative van der Waerden ring. We give a characterization of compact semisimple alternative (Jordan) van
der Waerden rings similarly to the characterization of associative semisimple van der Waerden rings given by
W.W. Comfort, D. Remus, H. Szambien, and M. Ursul.

1. INTRODUCTION

The notion of a van der Waerden associative ring has been introduced in [3]. The study
of this class of compact rings has been continued in [10]. Topological rings close to the
class of van der Waerden rings were studied in [11], [5]. We modify the notion of a van
der Waerden ring for hereditarily linearly compact rings and derive a characterization
of commutative semisimple hereditarily linearly compact metrizable van der Waerden
rings.
Warner proved that compact ring topology of any associative semisimple compact ring
is unique [16], or in other terms, that any associative semisimple compact ring is alge-
braically determined. We extend the Warner’s result and the result of Comfort and Remus
about semisimple van der Waerden rings [3] to semisimple alternative and Jordan rings.

2. NOTATION AND DEFINITIONS

Below ω = {0, 1, 2, . . .} or the first infinite ordinal and N = {1, 2, . . .}. Rings are as-
sumed to be unital, not necessarily associative. If S is a nonempty subset of a ring R, then
the left annihilator of S is defined as follows: Annl(S) = {x ∈ R|xS = 0}. If R is an
associative ring with identity then U(R) stands for the group of units of R. An ideal I
of a ring R is called cofinite if the factor ring R/I is finite. If R is a ring and m a cardinal
number then ⊕mR denotes the direct sum of m copies of R. Topological rings are assumed
to be Hausdorff. Ideal means a two sided ideal.
A topological associative ring (R, T ) is called to be left linearly compact [17],[7], [8] if it
has a filter base of neighborhoods of zero consisting of left ideals and the intersection of
every filter base consisting of closed cosets with respect to left ideals is nonempty. An as-
sociative topological ring is said to be left hereditarily linearly compact if every of its closed
subring is left linearly compact.

Definition 2.1. A topological ring is called linear if it has a filter base of neighbourhoods of zero
consisting of ideals.
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Definition 2.2. A subring B of a topological ring A is called a retract if there exists a continuous
homomorphism f : A → B such that f(b) = b for each b ∈ B.

3. PRELIMINARIES

Recall the notion of a ultraproduct of rings (see [6], Chapter 7). Let {Rα}α∈Ω be a family
of rings and F be a ultrafilter on Ω. Let R =

∏
α∈Ω Rα be the cartesian product of the rings

Rα(α ∈ Ω).
The ideal IF is defined as follows: (xα) ∈ IF if and only if {α | xα = 0α} ∈ F.
The factor ring (

∏
α∈Ω Rα)/IF is called the ultraproduct of the rings Rα. Recall one result

about the cardinality of a ultraproduct:

Theorem 3.1 ([4], Chapter 6, Corollary 6.8, p. 263; [9], Chapter IV, $ 8, Theorem 3, p. 220).
The cardinality of any ultraproduct of a countable family of countable sets with respect to a non-
principal ultrafilter is 2ℵ0 .

Theorem 3.2. [13] Every compact semisimple alternative (Jordan) ring has the form∏
α∈Ω

Rα

where each Rα is a finite simple alternative (Jordan) ring.

4. ALGEBRAICALLY DETERMINED NONASSOCIATIVE RINGS

A compact ring (R,U) is called algebraically determined if U ′ = U for every compact ring
topology U ′ on R. Algebraically determined rings were studied in [16].

Theorem 4.3. Let {Rα}α∈Ω be a family of finite not necessarily associative rings and Annl(Rα) =
0 for each α ∈ Ω..

Then R =
∏

α∈Ω Rα is an algebraically determined ring.

Proof. The ring R with the product topology U0 of discrete rings Rα(α ∈ Ω) is compact.
We have {0α} ×

∏
β ̸=α Rβ = Annl(Rα ×

∏
β ̸=α{0β}).

By continuity of the ring operations, {0α} ×
∏

β ̸=α Rβ is closed in any Hausdorff ring
topology U on R. Since {0α} ×

∏
β ̸=α Rβ is a cofinite ideal of R it is open in (R,U). There-

fore U0 ≤ U , for any ring topology U on R. If (R,U) is a compact ring (or a minimal
topological ring), then U = U0. □

Since any semisimple compact alternative (Jordan) ring is a product of finite rings with
identity, it follows:

Corollary 4.1. Any semisimple compact alternative (Jordan) ring is algebraically determined.

Corollary 4.2. For any finite not necessarily associative Boolean ring and for any cardinal number
m the compact ring Rm is algebraically determined.

Remark 4.1. A nonassociative Boolean ring is constructed in ([2], Chapter II,$12, Example 8)

Semisimple alternative ring means semisimple in the sense of Zhevlakov quasi-regular radical. The history
of radicals in alternative and Jordan rings can be found in ([18], Chapters 10 and 14).
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5. SEMISIMPLE COMMUTATIVE METRIZABLE HEREDITARILY LINEARLY COMPACT VAN
DER WAERDEN RINGS

Definition 5.3. A left hereditarily linearly compact ring R is said to be a van der Waerden ring if
every ring homomorphism f : R → R′ of R in a left hereditarily linearly compact ring is continu-
ous.

Lemma 5.1. Let {Fα|α ∈ Ω} be a family of fields and M be a maximal ideal of
∏

α∈Ω Rα. Then
either there exist a ultrafilter F on Ω such that M = IF or M = {0β}×

∏
α ̸=β Fα for some β ∈ Ω.

Remark 5.2. Lemma 5.1 is well-known. See, for instance, Lemma 7.3 in [14].

Lemma 5.2. A semisimple, metrizable, compact, commutative ring R is a van der Waerden ring in
the class of compact rings if and only if R is a van der Waerden ring in the class of left hereditarily
linearly compact rings.

Proof. ⇒: Let R =
∏

i∈N Fi , where each Fi is a finite field and let f : R → R′ be a
homomorphism of R in a left hereditarily linearly compact ring R . Then R is a regular
ring with identity, hence f(R) is a commutative regular ring with identity. Consider the
closure f(R) of f(R). Since f(R) is a complete linear topological ring, it is an inverse limit,
lim
←

(f(R)/V ), where V runs over all open ideals of f(R) and the projections are canonical.

Every f(R)/V is regular, hence, semisimple. By [1], f(R) is a product of fields which are
algebraic extensions of the finite fields. Let f(R) =

∏∞
i=1 Ri or f(R) =

∏n
i=1 Ri, where

each Ri is an algebraic extension of a finite field.
Evidently, it suffices to show that if pri ◦ f : R → Ri is continuous for each i ∈ N. Clearly,
(pri ◦ f)(R) is a finite or countable field.

If there exists i ∈ N such that ker(pri ◦ f) = {0i} ×
∏

j ̸=i Rj , then pri ◦ f is continuous.
If ker(pri ◦ f) = M = IF for a ultrafilter F, this will contradict Lemma 5.1. It follows that
pri ◦ f is always continuous.

⇐: Let f : R → R′ be a homomorphism in a compact ring. Since R has identity, we
can assume that R′ has identity. Then R′ will be hereditarily linearly compact, therefore f
will be continuous. □

Theorem 5.4. A commutative, semisimple, hereditarily linearly compact, metrizable ring R is a
van der Waerden ring if and only if

R = A×B, a product of topological rings, where A is a commutative, compact semisimple van
der Waerden ring and B is a commutative, metrizable hereditaily linearly compact ring which is a
product of infinite algebraic extensions of finite fields.

Proof. ⇒: Clearly, a direct summand of a van der Waerden ring is a van der Waerden ring.
Represent R in the form R = A ⊕ B, where A is a compact metrizable semisimple ring
and B is a metrizable product of the infinite fields which are algebraic extensions of finite
fields. By Lemma 5.2 A is a van der Waerden ring in the class of compact rings.

⇐: By Lemma 5.2, A is a van der Waerden ring in the class of hereditarily linearly
compact rings. If B is discrete, the proof is finished. Assume that B is nondiscrete. Let f :
B → R′ be a homomorphism in a hereditarily linearly compact ring R′. Let B =

∏
α∈Ω Rα.

We can assume without loss of a generality that R′ is an algebraic extension of a finite field
and that f is surjective. If ker f = {0β} ×

∏
α̸=β Rα, the proof is finished. If M = IF for an

ultrafilter F, then | R′ |≥ 2ℵ0 , a contradiction. Therefore f is continuous. □
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6. COMPACT SEMISIMPLE ALTERNATIVE AND JORDAN VAN DER WAERDEN RINGS

Remark 6.3. (folklore)Let k be a finite field considered as a topological ring with the discrete
topology and m an infinite cardinal number. Then km contains a dense maximal cofinite ideal.

Indeed, it suffices to take any maximal ideal M containing the ideal ⊕mk.

Lemma 6.3. If A is an arbitrary finite dimensional algebra with identity over a finite field F , then
Am, where m is an infinite cardinal number, is not a van der Waerden ring.

Proof. Since a retract of a van der Waerden ring is a van der Waerden ring it suffices to
prove lemma for m = N.

We will show that AN has a cofinite dense maximal ideal. Let B = AN = A1 ×A2 × · · · .
Denote by prk : AN → Ak the projection. Let u1, . . . , un be a basis of A over F . Define
ũi ∈ AN, prk(ũi) = ui for all k ∈ N and n ∈ N.
We claim that AN = FNũ1 ⊕ · · · ⊕ FNũn, a direct sum of submodules.
For, let x = (x1, x2, . . .) ∈ AN. Then xi =

∑n
j=1 α

(i)
j uj , where α

(i)
j ∈ F (i ∈ N), and j ∈ N.

Set α̃j = (α
(i)
j ) ∈ AN. If k ∈ N, then prk(

∑n
j=1 α̃j ũj)

=
∑n

j=1 prk(α̃j)prk(ũj) =
∑n

j=1 α
(k)
j uj

= prk(x), hence, x =
∑n

j=1 α̃j ũj .

Let α̃1ũ1 + · · · + α̃nũn = 0. Assume, for instance, that α̃1 ̸= 0. Then prk(α̃1) = αk
1 ̸= 0

for some k. It follows that prk(α̃1ũ1 + · · ·+ α̃nũn) = αk
1u1 + · · ·+ αk

nun = 0 and αk
1 ̸= 0, a

contradiction.

We have proved that AN = FNũ1 ⊕ · · · ⊕FNũn is a direct sum of submodules. Since FN

is compact, FNũi also is compact. It follows that AN = FNũ1 ⊕ · · · ⊕ FNũn is a topological
direct sum.

Let I is a cofinite dense ideal of FN. Then Iũ1 ⊕ · · · ⊕ Iũn will be cofinite dense ideal of
AN.

The ring AN belongs to the variety of rings generated by A. A variety of rings generated
by a finite ring is locally finite ([9], Chapter 6). It follows that the factor ring AN/(Iũ1 ⊕
· · · ⊕ Iũn) is finite.

By Remark 6.3 the ring FN contains a dense cofinite ideal I . Then Iũ1 ⊕ · · · ⊕ Iũn will
be a dense cofinite ideal of AN. It follows that AN/(Iũ1 ⊕ · · · ⊕ Iũn) is finite, hence AN is
not a van der Waerden ring, a contradiction.

□

Theorem 6.5. Let R =
∏

α∈Ω Rα be a semisimple alternative ring where each Rα is a finite
simple associative or alternative ring. Then R is a van der Waerden ring if and only for each α the
set of indexes β for which Rβ is isomorphic to Rα is finite.

Proof. ⇒: Assume on the contrary that there exists α ∈ Ω for which there exists an infinite
number of indexes β ∈ Ω such that Rβ

∼= Rα. Then R = AN × B, a topological poduct,
where A is an associative or alternative finite simple ring [13]. By Lemma 6.3, AN is not a
van der Waerden ring, a contradiction.

⇐: Represent R as a topological direct sum R = A× B, where A is an associative ring
and B is a topological product of Cayley-Dickson algebras over finite fields. By [3] A is a



NONASSOCIATIVE VAN DER WAERDEN RINGS 57

van der Waerden ring.

Since the topological product of a finite number of van der Waerden rings is a van der
Waerden ring, it suffices to show that B is a van der Waerden ring.

Represent B in the form B = Bk1
1 × Bk2

2 × · · · , where Bi are Cayley-Dickson algebras
over finite fields, | B1 |<| B2 |< · · · and k1, k2, . . . are some natural numbers.

Each ring Bi(i ∈ N) is an 8-dimensional algebra over its center which is a finite field Fi

([18], Corollary 1, p.151). Then U(F1) < U(F2) < · · · .
The groups U(Fi) are cyclic ([15], p.111). Denote by θi the generator of U(Fi)(i ∈ N) and
let λi = θi × θi × · · · × θi(ki times). If li are orders of θi, then l1 < l2 < · · · . Obviously, the
order of λi is ki. Consider the element x = (λi).

Let I be a cofinite ideal of B. There exists k ∈ N such that xk − 1 ∈ I . Let i ∈ N be such
that k < ki. Then λk

j − ej ̸= 0 for j ≥ i, where ej is the identity of Bj .

We notice that each element λk
j − ej , where j ≥ i is in the center of Bkj

j , hence it is
invertible. Let

y = (λk
i − ei)

ki × (λk
i+1 − ei+1)

ki+1 × · · · . Clearly, y is an invertible element of Bki
i ×

B
ki+1

i+1 × · · · . Let z be its inverse.

Then (xk−1)z = eki
i ×e

ki+1

i+1 ×· · · ∈ I . We have Bki
i ×B

ki+1

i+1 ×· · · = B(eki
i ×e

ki+1

i+1 ×· · · ) ⊆ I .

Since Bki
i ×B

ki+1

i+1 × · · · is an open ideal of R, the ideal I is open. □

Using Lemma 6.3 we can prove similarly to Theorem 6.5

Theorem 6.6. Let R =
∏

α∈Ω Rα be a semisimple Jordan ring, where each Rα is a finite simple
Jordan ring. Then R is a van der Waerden ring if and only if for each α the set of indexes β for
which Rβ is isomorphic to Rα is finite.

7. EXAMPLES

a) Cayley-Dickson algebras over finite fields Fpn , p ̸= 2, n ∈ N are nonassociative sim-
ple finite alternative rings [18], $ 2.2, 2.3 and [12], chapter III, $ 5.

b) If p is a prime number ̸= 2 then Fp with multiplication x ◦ y = 1
2 (xy + yx) = xy is a

finite simple Jordan ring.

8. CONCLUSIONS

The aim of this article is generalization of some recent results of the theory of compact
associative rings obtained by Remus D. and M.Ursul to compact alternative and Jordan
rings.
It should be mentioned that methods used in the proofs are similar to methods used in
the class of associative rings.
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