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Nonlinear elliptic problem involving natural growth term,
L1-data, variable exponent and Neumann boundary
condition

IBRAHIME KONATÉ 1 AND STANISLAS OUARO2

ABSTRACT. In this paper we study a class of multivalued Neumann boundary problem governed by the
general p(.)-Leray-Lions type operator and involving a natural growth term and L1 data. Using the technique
of maximal monotone operator in Banach spaces and the approximation method via Yosida regularisation and
penalizing term, we firstly prove the existence of at least one weak solution when the right hand side datum
is bounded. Secondly, we deduce the existence of at least one renormalized solution when the right and side
datum belongs in L1. By choosing an appropriate test function, we end by establishing a relationship between
renormalized solution and the entropy one.

1. INTRODUCTION

In the last ten years, the study of nonlinear partial differential equations in the frame-
work of Sobolev spaces with variable exponent has undergone a considerable attention in
the community of mathematic researchers. The main interest to such spaces rely on their
efficient application in modelling the behaviour of various non-homogeneous materials
in many fields such as physic, mechanical process, electro-rheological fluids, stationary
thermo-rheological viscous flows of non-Newtonian fluids (see [4, 18, 23, 30, 31] for more
details). They are also used in modelling the image processing ([15]).
In this paper we consider the following homogeneous nonlinear Neumann boundary
value problem

(Pg
f,β)

 β(u)− diva(x, u,∇u) + g(x, u,∇u) ∋ f in Ω

a(x, u,∇u) · ν = 0 on ∂Ω,

where Ω is an open bounded domain of RN (N ≥ 3) with smooth boundary ∂Ω, f ∈
L1(Ω), β : R → 2R is a maximal monotone mapping such that 0 ∈ β(0), ν is the outer unit
normal vector on ∂Ω. The operator A(u) = −diva(x, u,∇u) is called a p(.)-Leray-Lions
type operator acting from W 1,p(.)(Ω) into its dual (W 1,p(.)(Ω))∗.
Furthermore, g is a nonlinear term having natural growth (of order p(.) where p is a
function depending on x) with respect to gradient, which satisfies the sign-condition
g(x, s, ξ)s ≥ 0.
The aim of this paper is to show the existence of solutions of the problem (Pg

f,β). Our
approach is done in several steps. The first step consists to construct an approximating
problem (Pgϵ

f,βϵ
) via Yosida regularization and penalization. In the second step, we use

the technique of maximal monotone operator in Banach spaces to prove the existence of a
sequence of solutions (uϵ)ϵ>0 of the problem (Pgϵ

f,βϵ
). In the third step, we show that the
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sequence of solutions (uϵ)ϵ>0 converges to a measurable function u which is a weak solu-
tion of the initial problem when the source term f is an L∞-function. In the case where f
belongs in L1(Ω), we deduce the existence of a renormalized and/or an entropy solution.
Let us stress that the Neumann boundary condition which appears on the boundary of
problem (Pg

f,β) requires to work in the space W 1,p(.)(Ω) instead of the common space

W
1,p(.)
0 (Ω). This situation creates several difficulties that we need to overcome in the

present study. Going into details, the first difficulty which arises is that we cannot ap-
ply the Poincaré type inequality on the sequence of approximated solutions since they are
expected in the space W 1,p(.)(Ω). Note also that this famous inequality is an important
tool that one can use in homogeneous Dirichlet boundary condition case to achieve the
coerciveness of the operator associated to the approximating problem. To overcome this
difficulty, we add in the approximating problem a monotone function ϵ|uϵ|p(x)−2uϵ (see
Section 4 below). Taking into account the presence of this strong monotone perturbation,
one can obtain the coerciveness of the associated operator to problem (Pgϵ

f,βϵ
) when the

right hand side datum is an L∞-function. The second difficulty we encounter is how to
pass to the limit in the sequence of Yosida regularisation (βϵ(T 1

ϵ
(uϵ)))ϵ>0 (see Section 4

below). To be able to pass to the limit as ϵ → 0 when the source term f belongs in L∞,
we establish an L∞-estimate on the sequence (βϵ(T 1

ϵ
(uϵ)))ϵ>0 which permits us to obtain

its weak-* convergence to a function b in L∞(Ω). From this convergence, we deduce the
existence of a sequence of functions (bn)n∈N which belong in L1 and represents one com-
ponent of the couple of solutions of the approximated problem (Pg

fn,β
) in the case where

the right hand side datum f belongs in L1 in the initial problem (see Section 5). In order
to pass to the limit as n → ∞, we prove that the sequence (bn)n∈N is uniformly bounded
and relatively weakly compact in L1(Ω). This allows us to have its weak convergence to
a function b in L1(Ω).
In the literature, several authors have studied particular cases of the problem (Pg

β,f ). Let-
ting the p(.)-Leray-Lions type operator be independent of u, β having a bounded domain
and g ≡ 0, Ouaro and Ouédraogo (see [29]) have established the existence and uniqueness
of an entropy solution of the following problem.

(P 0
β,f )

 β(u)− div a(x,∇u) ∋ f in Ω

a(x,∇u).η = 0 on ∂Ω,

where f belongs in L1(Ω). In [28], the authors have pushed the investigations of problem
(P 0

β,f ) by assuming that the right hand side data f is a diffuse measure. Other important
works about inclusion differential problem can be found in [1, 2, 8]. In the framework
of classic Sobolev spaces with constant exponent, many works in L1-theory for nonlinear
elliptic problem involving general p-Leray-Lions type operator and natural growth term
have been analysed in [9, 10, 11, 12, 13, 24]. These works was further pushed forward into
the framework of variable exponent [5, 17, 32]. As far as elliptic equations with natural
growth terms and L1-data under homogeneous Dirichlet boundary conditions are con-
cerned, we refer the readers to [6, 7].
In a recent paper, Akdim et al. [3] have analysed the existence of solution of differential
inclusion equation under homogeneous Dirichlet boundary condition in classic Sobolev
space. The main interest in our work is that we are dealing with general nonlinear opera-
tors −diva(x, u,∇u) and natural growth term under Neumann boundary condition in the
context of Sobolev space with variable exponent.
Let us summarize the content of the paper. In Section 2, will present some definitions
and properties of Sobolev spaces with variable exponents. In Section 3, we give our basic
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assumptions and recall a fundamental result. In Section 4, we prove the existence of weak
solution when the right hand side datum f ∈ L∞(Ω) or f ∈ L1(Ω). Finally, in Section 5,
we prove the existence of renormalized solution when the right hand side datum belongs
to L1(Ω).

2. PRELIMINARIES

We recall in what follows some definitions and basic properties of Lebesgue and Sobolev
spaces with variable exponent.
Let Ω be a bounded domain in RN (N ≥ 3) with smooth boundary ∂Ω and p(.) : Ω −→ R+

be a continuous function with

(2.1) 1 < p− := inf
x∈Ω

p(x) ≤ p+ := sup
x∈Ω

p(x) <∞.

We denote

C+(Ω) =

{
p ∈ C(Ω) : min

x∈Ω
p(x) > 1 a.e. x ∈ Ω

}
.

For any p ∈ C+(Ω), the variable exponent Lebesgue space is defined by

Lp(.)(Ω) :=

{
u : Ω → R measurable :

∫
Ω

|u|p(x)dx <∞
}
,

endowed with the so-called Luxembourg norm

∥u∥p(.) := inf

{
λ > 0 :

∫
Ω

∣∣∣∣u(x)λ
∣∣∣∣p(x)dx ≤ 1

}
.

The p(.)-modular of the Lp(.)(Ω) space is the mapping ρp(.) : Lp(.)(Ω) −→ R defined by

ρp(.)(u) :=

∫
Ω

|u|p(x)dx.

For any u ∈ Lp(.)(Ω), the following inequality (see [21],[22]) will be used later.

(2.2) min
{
∥u∥p

−

p(.); ∥u∥
p+

p(.)

}
≤ ρp(.)(u) ≤ max

{
∥u∥p

−

p(.); ∥u∥
p+

p(.)

}
.

For any u ∈ Lp(.)(Ω) and v ∈ Lq(.)(Ω), with 1
p(x) +

1
q(x) = 1 in Ω, we have the Hölder type

inequality (see [26]).

(2.3)
∣∣∣∣ ∫

Ω

uvdx

∣∣∣∣ ≤ (
1

p−
+

1

q−

)
∥u∥p(.)∥v∥q(.).

If Ω is bounded and p, q ∈ C+(Ω) such that p(x) ≤ q(x) for any x ∈ Ω, then the embedding
Lq(.)(Ω) ↪→ Lp(.)(Ω) is continuous (see [26], Theorem 2.8).

Proposition 2.1. [26] For un, u ∈ Lp(.)(Ω) and p+ <∞, the following assertion hold.
(i) ∥u∥p(.) < 1 (resp, = 1, > 1) if and only if ρp(.)(u) < 1 (resp, = 1, > 1);

(ii) ∥u∥p(.) > 1 imply ∥u∥p−
p(.) ≤ ρp(.)(u) ≤ ∥u∥p+

p(.), and ∥u∥p(.) < 1 imply ∥u∥p+

p(.) ≤
ρp(.)(u) ≤ ∥u∥p−

p(.);
(iii) ∥un∥p(.) → 0 if and only if ρp(.)(un) → 0, and ∥un∥p(.) → ∞ if and only ρp(.)(un) →

∞.

Now, we define the variable exponent Sobolev space by

W 1,p(.)(Ω) :=

{
u ∈ Lp(.)(Ω) : |∇u| ∈ Lp(.)(Ω)

}
,
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with the norm

||u||1,p(.) = ∥u∥p(.) + ∥∇u∥p(.).

We denote by W 1,p(.)
0 (Ω) the closure of C∞

0 (Ω) in W 1,p(.)(Ω), and we define the Sobolev
exponent by p∗(.) = Np(.)

N−p(.) if p(.) < N and p∗(.) = ∞ if p(.) ≥ N .

Lemma 2.1. [6] For 1 < p(.) <∞ and u, un ∈ Lp(.)(Ω) such that ∥un∥p(.) ≤ C, if un(.) → u(.)

a.e. in Ω, then un ⇀ u in Lp(.)(Ω).

Theorem 2.1. [22, 25]

(i) Assuming 1 < p− ≤ p+ < ∞, the spaces Lp(.)(Ω) and W 1,p(.)
0 (Ω) are separable and

reflexive Banach spaces.
(ii) If q ∈ C+(Ω) and q(x) < p∗(x) for any x ∈ Ω, then the embedding W 1,p(.)

0 (Ω) ↪→↪→
Lq(.)(Ω) is continuous and compact.

(iii) Poincaré inequality : there exists a constant C > 0, such that

∥u∥p(.) ≤ C∥∇u∥p(.), ∀u ∈W
1,p(.)
0 (Ω).

(iv) Sobolev-Poincaré inequality : there exists a constant C > 0, such that

∥u∥p∗(.) ≤ C∥∇u∥p(.), ∀u ∈W
1,p(.)
0 (Ω).

Remark 2.1. By (iii) of Theorem 2.1, we deduce that ∥∇u∥p(.) and ∥u∥1,p(.) are equivalent norms
in W 1,p(.)

0 (Ω).

Definition 2.1. [19] For any x ∈ Ω such that 1
p(x) +

1
p′(x) = 1, we denote the dual of the Sobolev

space W 1,p(.)
0 (Ω) by W−1,p′(.)(Ω), and for each F ∈ W−1,p′(.)(Ω), there exists f0, f1, ..., fN ∈

Lp′(.)(Ω) such that F = f0 +

N∑
i=1

∂fi
∂xi

. Moreover, for all u ∈W
1,p(.)
0 (Ω), one has

⟨F, u⟩ =
∫
Ω

f0udx−
N∑
i=1

∫
Ω

fi
∂u

∂xi
dx,

and we define a norm on the dual space by

∥F∥−1,p′(.) ≃
N∑
i=0

∥fi∥p′(.).

Finally, we use throughout the paper, the truncation function Tk, (k > 0) defined by

(2.4) Tk(s) = max{−k,min{k; s}}.

It is clear that lim
k→∞

Tk(s) = s and |Tk(s)| = min{|s|; k}.

T 1,p(.)(Ω) := {u : Ω → R measurable function such that Tk(u) ∈W 1,p(.)(Ω)}.
Let us introduce some functions that will be frequently used in this paper.
For r ∈ R, let r+ := max(r, 0) and sign+

0 be the function defined by

sign+0 (r) =

{
1 if r > 0,
0 if r ≤ 0.
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For δ > 0, we define H+
δ : R → R by

H+
δ (r) =



1 if r > δ

r

δ
if 0 ≤ r ≤ δ

0 if r < 0.

Clearly, H+
δ is an approximation of sign+0 .

Definition 2.2. [14] Let (Ω,M, µ) be a finite measure space. A bounded subset F of L1(µ) is
called uniformly integrable if for every ϵ > 0 and f ∈ F , one has

• there exists δ > 0 such that
∫
A

|f |dµ < ϵ if µ(A) < δ

and
• there exists ω ⊂ Ω measurable with |ω| <∞ such that

∫
Ω\ω

|f |dµ < ϵ.

Proposition 2.2. [16] Let (Ω,M, µ) be a finite measure space. A subset F of L1(µ) is called
uniformly integrable if one has

lim
a→∞

(
sup
f∈F

∫
{|f |≥a}

|f |dµ
)

= 0.

Proposition 2.3. [16] If the measure µ is bounded, any subset F in L1, bounded in L∞, is
uniformly integrable.

Proposition 2.4. [16] Let F be a subset of L1(µ). If there exists a positive function f ∈ L1 such
that |g| ≤ f for any g ∈ F , then, F is uniformly integrable.

Theorem 2.2. [20] (Dunford). A subset of L1(µ) is relatively weakly compact if and only if it is
bounded and uniformly integrable.

Lemma 2.2. [6] Let u ∈ Lr(.)(Ω) and un ∈ Lr(.)(Ω) such that ∥un∥Lr(.)(Ω) ≤ C for 1 < r(x) <

∞. If un ⇀ u a.e. in Ω, then un ⇀ u in Lr(.)(Ω).

3. ASSUMPTION AND FUNDAMENTAL RESULT

The data involved in our study are subject to the following conditions.
a : Ω × R × RN → RN is a Carathéodory function satisfying the following assumptions
for almost every x ∈ Ω and for all ξ, η ∈ RN , s ∈ R.

(3.5) a(x, s, ξ).ξ ≥ λ|ξ|p(x);

(3.6) |a(x, s, ξ)| ≤ β(k(x) + |s|p(x)−1 + |ξ|p(x)−1);

(3.7) (a(x, s, ξ)− a(x, s, η))(ξ − η) > 0 if ξ ̸= η;

where λ, β are two positive constants and k(.) is a given nonnegative function inLp′(.)(Ω).

(3.8) a(x, s, 0) = 0.

Furthermore, g : Ω × R × RN → R is a Carathéodory function such that for almost every
x ∈ Ω, s ∈ R, ξ ∈ RN ,

(3.9) g(x, s, ξ)s ≥ 0;

(3.10) |g(x, s, ξ)| ≤ b(|s|)(c(x) + |ξ|p(x));
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where b : R+ → R+ is a continuous increasing function, c(.) a given nonnegative function
in L1(Ω).
In the sequel, the following lemma which proof follows the same lines as in [6] will be
useful.

Lemma 3.3. [6] Assuming that (3.5)-(3.7) hold and (un)n∈N is a sequence in W 1,p(.)(Ω) such
that un ⇀ u in W 1,p(.)(Ω) and

(3.11)
∫
Ω

[
a(x, un,∇un)− a(x, un,∇u)

]
∇(un − u)dx→ 0.

Then, un → u in W 1,p(.)(Ω).

4. EXITENCE OF WEAK SOLUTION

This part contains the first main results of the problem (Pg
f,g) using the notion of weak

solution.

Theorem 4.3. For f ∈ L∞(Ω) or in L1(Ω), there exists at least one weak solution (u, b) ∈
T 1,p(.)(Ω) × L1(Ω) of problem (Pg

f,β) in the sense that b(x) ∈ β(u(x)) a.e. in Ω, g(x, u,∇u) ∈
L1(Ω) and

(4.12)
∫
Ω

bφdx+

∫
Ω

a(x, u,∇u)∇φdx+

∫
Ω

g(x, u,∇u)φdx =

∫
Ω

fφdx,

for any φ ∈W 1,p(.)(Ω) ∩ L∞(Ω).

Proof. In this section we prove into tree steps, the existence of at least one weak solution
of the problem (Pg

f,β) when the right and side datum f belongs to L∞(Ω).
4.1. Proof of the case f ∈ L∞(Ω).
Step 1. Approximated problem
We consider the sequence of approximate problem

(Pgϵ
f,βϵ

)


βϵ(T 1

ϵ
(uϵ))− diva(x, uϵ,∇uϵ) + gϵ(x, uϵ,∇uϵ) + ϵ|uϵ|p(x)−2uϵ = f in Ω

a(x, uϵ,∇uϵ) · η = 0 on ∂Ω,

where βϵ : R → R is the Yosida approximation of β and gϵ(x, s, ξ) =
g(x, s, ξ)

1 + ϵ|g(x, s, ξ)|
,

for any ϵ ∈ (0, 1].
For all u ∈W 1,p(.)(Ω), remark that

⟨βϵ(u), u⟩ ≥ 0, |βϵ(u)| ≤
1

ϵ
|u| and lim

ϵ→0
βϵ(u) = β(u).

One also has

gϵ(x, s, ξ)s ≥ 0, |gϵ(x, s, ξ)| ≤ |g(x, s, ξ)| , |gϵ(x, s, ξ)| ≤
1

ϵ

and

|βϵ(T 1
ϵ
(uϵ))| ≤

1

ϵ2
.

Theorem 4.4. For any f ∈ (W 1,p(.)(Ω))∗, the problem (Pgϵ
f,βϵ

) admits at least one weak solution
uϵ ∈W 1,p(.)(Ω). Namely,∫

Ω

βϵ(T 1
ϵ
(uϵ))φdx+

∫
Ω

a(x, uϵ,∇uϵ)∇φdx+

∫
Ω

gϵ(x, uϵ,∇uϵ)φdx+ ϵ

∫
Ω

|uϵ|p(x)−2uϵφdx
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(4.13) =

∫
Ω

fφdx,

for all φ ∈W 1,p(.)(Ω) ∩ L∞(Ω).

Proof. Let us define the operator Aϵ :W
1,p(.)(Ω) → (W 1,p(.)(Ω))∗ as follows.

∀ u, φ ∈W 1,p(.)(Ω),

⟨Aϵ(u), φ⟩ = ⟨Au,φ⟩+
∫
Ω

βϵ(T 1
ϵ
(u))φdx+

∫
Ω

gϵ(x, u,∇u)φdx+ ϵ

∫
Ω

|uϵ|p(x)−2uϵdx,

where ⟨Au,φ⟩ =
∫
Ω

a(x, u,∇u)∇φdx.

Lemma 4.4. The operator Aϵ is pseudo-monotone and bounded. Moreover, Aϵ is coercive in the
following sense.

⟨Aϵ(u), u⟩
∥u∥1,p(.)

→ ∞ as ∥u∥1,p(.) → ∞.

Proof. There exists a constant C > 0 such that (see [32])

(4.14)
∣∣∣∣ ∫

Ω

gϵ(x, u,∇u)φdx
∣∣∣∣ ≤ C∥φ∥1,p(.).

Since βϵ ◦ T 1
ϵ

is bounded in Lp′(.)(Ω), there exists a constant C ′ > 0 such that, by using
Hölder type inequality, one gets∣∣∣∣ ∫

Ω

βϵ(T 1
ϵ
(u))φdx

∣∣∣∣ ≤ ∫
Ω

|βϵ(T 1
ϵ
(u))φ|dx ≤

(
1

p−
+

1

(p−)′

)
∥βϵ(T 1

ϵ
(u))∥p′(.)∥φ∥p(.)

(4.15) ≤ C ′∥φ∥1,p(.).

By using again Hölder type inequality, one has∣∣∣∣ϵ∫
Ω

|uϵ|p(x)−2uϵdx

∣∣∣∣ ≤ ϵ

∫
Ω

|uϵ|p(x)−1|φ|dx

≤ ϵ

(
1

p−
+

1

(p−)′

)
∥|uϵ|p(x)−1∥p′(.)∥φ∥p(.)

≤ ϵ

(
1

p−
+

1

(p−)′

)
∥|uϵ|p(x)−1∥p′(.)(∥φ∥p(.) + ∥∇φ∥p(.)) ≤ C∥φ∥1,p(.),

where C = ϵ

(
1
p−

+ 1
(p−)′

)
∥|uϵ|p(x)−1∥p′(.).

From the Hölder type inequality and the growth condition (3.10), we can prove that A is
bounded. Then, we deduce from (3.6), (4.14) and (4.15) that Aϵ is bounded.
To prove the coercivity of Aϵ, we set

α =

 p+ if ∥u∥1,p(.) ≤ 1,

p− if ∥u∥1,p(.) > 1;
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then, for all u ∈W 1,p(.)(Ω), one has

⟨Aϵ(u), u⟩
∥u∥1,p(.)

=

⟨Au, u⟩+
∫
Ω

βϵ(T 1
ϵ
(u))udx+

∫
Ω

gϵ(x, u,∇u)udx+ ϵ

∫
Ω

|u|p(x)−2udx

∥u∥1,p(.)

≥

∫
Ω

a(x, u,∇u)∇udx+ ϵ

∫
Ω

|u|p(x)−2udx

∥u∥1,p(.)
(by neglecting positive terms)

≥
λ

∫
Ω

|∇u|p(x)dx+ ϵ

∫
Ω

|u|p(x)−2udx

∥u∥1,p(.)

≥
min(ϵ, λ)

(∫
Ω

|∇u|p(x)dx+

∫
Ω

|u|p(x)dx
)

∥u∥1,p(.)
≥

min(ϵ, λ)ρ1,p(.)(u)

∥u∥1,p(.)

≥ min(ϵ, λ)
∥u∥α1,p(.)
∥u∥1,p(.)

≥ min(ϵ, λ)∥u∥α−1
1,p(.) → ∞ as ∥u∥1,p(.) → ∞ (since 1 < p− ≤ p+).

Therefore Aϵ is coercive.
Now it remains to establish that Aϵ is pseudo-monotone. Let (uk)k∈N be a sequence in
W 1,p(.)(Ω) such that

(4.16)


uk ⇀ u in W 1,p(.)(Ω),

Aϵuk ⇀ χ in (W 1,p(.)(Ω))∗,

lim
k→∞

sup⟨Aϵuk, uk⟩ ≤ ⟨χϵ, u⟩.

Let us show that

⟨Aϵuk, uk⟩ −→ ⟨χ, u⟩ as k −→ ∞, where χ = Aϵu.

According to the compact embedding W 1,p(.)(Ω) ↪→↪→ Lp(.)(Ω), there exists a subse-
quence still denoted (uk)k∈N such that uk → u in Lp(.)(Ω) as k → ∞.
As (uk)k∈N is a bounded sequence in W 1,p(.)(Ω), using the growth condition it follows
that (a(x, uk,∇uk))k∈N is bounded in (Lp′(.)(Ω))N . Then, there exists a function φ ∈
(Lp′(.)(Ω))N such that

(4.17) a(x, uk,∇uk)⇀ φ in (Lp′(.)(Ω))N as k → ∞.

Since (gϵ(x, uk,∇uk))k∈N is bounded in (Lp′(.)(Ω))N , we similarly deduce the existence of
a function ψϵ ∈ (Lp′(.)(Ω))N such that

(4.18) gϵ(x, uk,∇uk)⇀ ψϵ in (Lp′(.)(Ω))N as k → ∞.

In view of the inequality |βϵ(T 1
ϵ
(uk))| ≤ 1

ϵ2 and the convergence uk −→ u a.e. in Ω as
k → ∞, one deduces from the Lebesgue dominated convergence theorem that

(4.19) βϵ(T 1
ϵ
(uk)) −→ βϵ(T 1

ϵ
(u)) in L(p−)′(Ω) as k → ∞.

On the other hand, the generalized Lebesgue convergence theorem implies the following.

(4.20) ϵ|uk|p(x)−2uk −→ ϵ|u|p(x)−2u strongly in Lp′(.)(Ω) as k → ∞.



Nonlinear elliptic problem... 31

Thus, for any v ∈W 1,p(.)(Ω),

⟨χϵ, v⟩ = lim
k→∞

⟨Aϵuk, v⟩

= lim
k→∞

∫
Ω

a(x, uk,∇uk)∇vdx+ lim
k→∞

∫
Ω

gϵ(x, uk,∇uk)vdx

+ lim
k→∞

∫
Ω

βϵ(T 1
ϵ
(uk))vdx+ ϵ lim

k→∞

∫
Ω

|uk|p(x)−2ukdx

(4.21) =

∫
Ω

φ∇vdx+

∫
Ω

ψϵvdx+

∫
Ω

βϵ(T 1
ϵ
(u))vdx+ ϵ

∫
Ω

|u|p(x)−2udx.

Having in mind (4.16) and (4.21), one obtains

lim
k→∞

sup⟨Aϵuk, uk⟩ = lim
k→∞

sup

(∫
Ω

a(x, uk,∇uk)∇ukdx+ ϵ

∫
Ω

|uk|p(x)dx

+

∫
Ω

gϵ(x, uk,∇uk)ukdx+

∫
Ω

βϵ(T 1
ϵ
(uk))ukdx

)
≤

∫
Ω

φ∇udx+

∫
Ω

ψϵudx+

∫
Ω

βϵ(T 1
ϵ
(u))udx

(4.22) +ϵ

∫
Ω

|u|p(x)dx.

Using respectively (4.18), (4.19) and (4.20) when k → ∞, one has

(4.23)
∫
Ω

gϵ(x, uk,∇uk)ukdx −→
∫
Ω

ψϵudx,

(4.24)
∫
Ω

βϵ(T 1
ϵ
(uk))ukdx −→

∫
Ω

βϵ(T 1
ϵ
(u))udx

and

(4.25) ϵ

∫
Ω

|uk|p(x)−2uk −→ ϵ

∫
Ω

|u|p(x)−2udx.

It follows that

(4.26) lim
k→∞

sup

∫
Ω

a(x, uk,∇uk)∇ukdx ≤
∫
Ω

φ∇udx.

Thanks to (3.7), one has∫
Ω

(a(x, uk,∇uk)− a(x, uk,∇u))(∇uk −∇u)dx ≥ 0,

then,∫
Ω

a(x, uk,∇uk)∇ukdx ≥
∫
Ω

a(x, uk,∇uk)∇udx+

∫
Ω

a(x, uk,∇u)(∇uk −∇u)dx.

Since ∇uk ⇀ ∇u in Lp(.)(Ω), using (4.17) one obtains

lim
k→∞

inf

∫
Ω

a(x, uk,∇uk)∇ukdx ≥
∫
Ω

φ∇udx.

From (4.26), one can deduce that

(4.27) lim
k→∞

∫
Ω

a(x, uk,∇uk)∇ukdx =

∫
Ω

φ∇udx.
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Therefore, combining (4.23), (4.24), (4.25) and (4.27), one obtains

⟨Aϵuk, uk⟩ → ⟨χϵ, u⟩ as k → ∞.

It remain to prove that a(x, uk,∇uk)⇀ a(x, u,∇u) in (Lp′(.)(Ω))N and

gϵ(x, uk,∇uk)⇀ gϵ(x, u,∇u) in Lp′(.)(Ω) as k → ∞.

From (4.27), we can prove that

lim
k→∞

∫
Ω

(a(x, uk,∇uk)− a(x, uk,∇u))(∇uk −∇u)dx = 0.

According to Lemma 3.3, one obtains

uk → u in W 1,p(.)(Ω) and ∇uk → ∇u a.e. in Ω as k → ∞;

then,

(4.28) a(x, uk,∇uk)⇀ a(x, u,∇u) in (Lp′(.)(Ω))N as k → ∞

and

(4.29) gϵ(x, uk,∇uk)⇀ gϵ(x, u,∇u) in Lp′(.)(Ω) as k → ∞.

Therefore, we can write χϵ = Aϵu, which end the proof of Lemma 4.4.
Since Aϵ is bounded, coercive and pseudo-monotone, Aϵ is surjective (see [27], Theorem
2.7). Therefore, for any f ∈ (W 1,p(.)(Ω))∗, there exists at least one solution uϵ ∈W 1,p(.)(Ω)
of the problem (Pgϵ

f,βϵ
), which complete the proof Theorem 4.4 . □

□

Step 2. The a priori estimate

Lemma 4.5. Let f ∈ L∞(Ω) and 0 < ϵ ≤ 1. If uϵ ∈ W 1,p(.)(Ω) is a weak solution of (Pgϵ
f,βϵ

),
then,

(4.30) ∥βϵ(T 1
ϵ
(uϵ))∥∞ ≤ ∥f∥∞.

For any k ≥ 1, there exists a constant C2 > 0 not depending on k, such that

(4.31) ∥∇Tk(uϵ)∥p(.) ≤ C2.

Proof. By using the test function φδ,ϵ =
1

δ

[
Tk+δ(βϵ(T 1

ϵ
(uϵ))) − Tk(βϵ(T 1

ϵ
(uϵ)))

]
in (4.13)

where δ > 0, one obtains∫
Ω

βϵ(T 1
ϵ
(uϵ))φδ,ϵdx+

∫
Ω

a(x, uϵ,∇uϵ)∇φδ,ϵdx+

∫
Ω

gϵ(x, uϵ,∇uϵ)φδ,ϵdx

(4.32) +ϵ

∫
Ω

|uϵ|p(x)−2uϵφδ,ϵdx =

∫
Ω

fφδ,ϵdx.

Since ∇φδ,ϵ =


1
δ (β

′
ϵ(T 1

ϵ
(uϵ)))∇uϵ if k ≤ |βϵ(T 1

ϵ
(uϵ))| ≤ k + δ,

0 elsewhere
and βϵ is nondecreasing, by using (3.5), one gets∫

Ω

a(x, uϵ,∇uϵ)∇φδ,ϵdx =
1

δ

∫
Ω

a(x, uϵ,∇uϵ)β′
ϵ(T 1

ϵ
(uϵ))∇uϵdx ≥ 0.
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Observing that φδ,ϵ has the same sign as uϵ, one deduces from (3.9) that∫
Ω

gϵ(x, uϵ,∇uϵ)φδ,ϵdx ≥ 0.

Then, ∫
Ω

βϵ(T 1
ϵ
(uϵ))φδ,ϵdx ≤

∫
Ω

fφδ,ϵdx.

Therefore,∫
{k+δ≤|βϵ(T 1

ϵ
(uϵ))|}

βϵ(T 1
ϵ
(uϵ))φδ,ϵdx ≤

∫
Ω

βϵ(T 1
ϵ
(uϵ))φδ,ϵdx ≤

∫
Ω

fφδ,ϵdx.

Since φδ,ϵ = 0 on the set {|βϵ(T 1
ϵ
(uϵ))| < k} and |φδ,ϵ| ≤ 1, one has

(4.33)
1

δ

∫
{k+δ≤|βϵ(T 1

ϵ
(uϵ))|}

βϵ(T 1
ϵ
(uϵ))φδ,ϵdx ≤

∫
{k≤|βϵ(T 1

ϵ
(uϵ))|}

|f |dx.

Since k ≤ |βϵ(T 1
ϵ
(uϵ))| on the set {k + δ ≤ |βϵ(T 1

ϵ
(uϵ))|}, one has

kmeas{k + δ ≤ |βϵ(T 1
ϵ
(uϵ))|} ≤

∫
{k+δ≤|βϵ(T 1

ϵ
(uϵ))|}

|βϵ(T 1
ϵ
(uϵ))|dx

≤ 1

δ

∫
{k≤|βϵ(T 1

ϵ
(uϵ))|}

βϵ(T 1
ϵ
(uϵ))

×
[
Tk+δ(βϵ(T 1

ϵ
(uϵ)))− Tk(βϵ(T 1

ϵ
(uϵ)))

]
dx

≤
∫
{k≤|βϵ(T 1

ϵ
(uϵ))|}

|f |dx

≤ ∥f∥L∞(Ω)meas{k ≤ |βϵ(T 1
ϵ
(uϵ))|}.

Letting δ → 0 and choosing k > ∥f∥L∞(Ω), one obtains

kmeas{k ≤ |βϵ(T 1
ϵ
(uϵ))|} ≤ ∥f∥L∞(Ω)meas{k ≤ |βϵ(T 1

ϵ
(uϵ))|}.

It follows that meas{k ≤ |βϵ(T 1
ϵ
(uϵ))|} = 0 for any k > ∥f∥L∞(Ω). Thus,

∥βϵ(T 1
ϵ
(uϵ))∥L∞(Ω) ≤ ∥f∥L∞(Ω).

Taking Tk(uϵ) as a test function in (4.13), one obtains∫
Ω

βϵ(T 1
ϵ
(uϵ))Tk(uϵ)dx+

∫
Ω

gϵ(x, uϵ,∇uϵ)Tk(uϵ)dx+ ϵ

∫
Ω

|uϵ|p(x)−2uϵTk(uϵ)dx

+

∫
Ω

a(x, uϵ,∇uϵ)∇Tk(uϵ)dx =

∫
Ω

fTk(uϵ)dx.

As the first tree terms of the left-hand side of the above equality are positives, one has∫
Ω

a(x, uϵ,∇uϵ)∇Tk(uϵ)dx =

∫
{|uϵ|≤k}

a(x, uϵ,∇uϵ)∇Tk(uϵ)dx ≤
∫
Ω

fTk(uϵ)dx.

From (3.5), one deduces that ∫
Ω

|∇Tk(uϵ)|p(x)dx ≤ k∥f∥∞
λ

.
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Using Proposition 2.1, it follows that

∥∇Tk(uϵ)∥γp(.) ≤
k∥f∥∞
λ

,

where

γ =

 p+ if ∥∇Tk(uϵ)∥p(.) ≤ 1

p− if ∥∇Tk(uϵ)∥p(.) > 1.

Therefore,
∥∇Tk(uϵ)∥p(.) ≤ C2 for all k ≥ 1,

where C2 :=

(
k∥f∥∞

λ

) 1
γ

.

□

Lemma 4.6. If uϵ is a solution of (Pgϵ
f,βϵ

), one has

(4.34)
∫
Ω

(|βϵ(T 1
ϵ
(uϵ))| − k)+dx ≤

∫
Ω

(|f | − k)+dx.

Proof. Applying the test function φ = H+
δ (βϵ(T 1

ϵ
(uϵ))− k) in (4.13), one obtains∫

Ω

βϵ(T 1
ϵ
(uϵ))H

+
δ (βϵ(T 1

ϵ
(uϵ))− k)dx+

∫
Ω

a(x, uϵ,∇uϵ)∇H+
δ (βϵ(T 1

ϵ
(uϵ))− k)dx

+

∫
Ω

gϵ(x, uϵ,∇uϵ)H+
δ (βϵ(T 1

ϵ
(uϵ))− k)dx+ ϵ

∫
Ω

|uϵ|p(x)−2uϵH
+
δ (βϵ(T 1

ϵ
(uϵ))− k)dx

=

∫
Ω

fH+
δ (βϵ(T 1

ϵ
(uϵ))− k)dx.

Since βϵ is nondecreasing, using (3.5), one gets∫
Ω

a(x, uϵ,∇uϵ)(H+
δ )′(βϵ(T 1

ϵ
(uϵ))− k)β′

ϵ(T 1
ϵ
(uϵ))∇uϵdx ≥ 0.

Using the sign condition on gϵ, one has∫
Ω

gϵ(x, uϵ,∇uϵ)H+
δ (βϵ(T 1

ϵ
(uϵ))− k)dx ≥ 0.

One also has

ϵ

∫
Ω

|uϵ|p(x)−2uϵH
+
δ (βϵ(T 1

ϵ
(uϵ))− k)dx ≥ 0.

Therefore,∫
Ω

(βϵ(T 1
ϵ
(uϵ))− k)H+

δ (βϵ(T 1
ϵ
(uϵ))− k)dx ≤

∫
Ω

(f − k)H+
δ (βϵ(T 1

ϵ
(uϵ))− k)dx.

Letting δ → 0 in the inequality above, one obtain

(4.35)
∫
Ω

(βϵ(T 1
ϵ
(uϵ))− k)+dx ≤

∫
Ω

(f − k)+dx.

Reasoning similarly, one obtains

(4.36)
∫
Ω

(βϵ(T 1
ϵ
(uϵ) + k)−dx ≤

∫
Ω

(f + k)−dx.

By combining (4.35) and (4.36), it follows (4.34). □
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Proposition 4.5. [28] Let uϵ be a weak solution of (Pgϵ
f,βϵ

). For any k > 0 large enough, one has

(4.37) meas{|uϵ| > k} ≤ ∥f∥1
min{βϵ(k), |βϵ(−k)|}

and

(4.38) meas

{
|∇uϵ| > k

}
≤ C(k + 1)

kp− +
∥f∥1

min{βϵ(k), |βϵ(−k)|}
,

where C is a positive constant.

Step 3. Convergence results

Proposition 4.6. For any k > 0 and f ∈ L∞(Ω), if uϵ ∈ W 1,p(.)(Ω) is a solution of problem
(Pgϵ

f,βϵ
), then, there exists b ∈ L∞(Ω) such that

(4.39) βϵ(T 1
ϵ
(uϵ))⇀ b weakly-* in L∞(Ω) as ϵ→ 0.

Proof. Thanks to (4.30), there exists b ∈ L∞(Ω) such that (4.39) holds. □

Proposition 4.7.

(i) For any k > 0, Tk(uϵ) −→ Tk(u) in Lp−
(Ω) and a.e. in Ω, as ϵ→ 0.

(ii) There exists u ∈ T 1,p(.)(Ω) such that u ∈ dom(β) a.e. in Ω and

uϵ → u in measure and a.e. in Ω, as ϵ→ 0.

Proof. It follows from (4.31) that the sequence (∇Tk(uϵ))ϵ>0 is bounded in Lp(.)(Ω). There-
fore, the sequence (Tk(uϵ))ϵ>0 is bounded in W 1,p(.)(Ω). Then, there exists a subsequence
still denoted (Tk(uϵ))ϵ>0 and a measurable function σk ∈W 1,p(.)(Ω) such that

(4.40)
{
Tk(uϵ)⇀ σk in W 1,p(.)(Ω) as ϵ→ 0,

Tk(uϵ) → σk in Lp−
(Ω) and a.e. in Ω as ϵ→ 0.

The sequence (uϵ)ϵ>0 is a Cauchy sequence in measure in Ω.
Indeed, let s > 0 and set Eϵ1 = {|uϵ1 | > k}, Eϵ2 = {|uϵ2 | > k} and Eϵ1,ϵ2 = {|Tk(uϵ1) +
Tk(uϵ2)| > k}, where k > 0 is a real number to be chosen later.
One has

{|uϵ1 − uϵ2 | > s} ⊂ Eϵ1 ∪ Eϵ2 ∪ Eϵ1,ϵ2 ,

which implies that

(4.41) meas{|uϵ1 − uϵ2 | > s} ≤ meas(Eϵ1) + meas(Eϵ2) + meas(Eϵ1,ϵ2).

Let θ > 0. By using (4.37), there exists k0 = k0(θ) such that

(4.42) ∀k ≥ k0(θ), meas{|uϵ1 | > k} ≤ θ

3
and meas{|uϵ2 | > k} ≤ θ

3
.

Since the sequence (Tk(uϵ))ϵ>0 converges strongly in Lp−
(Ω), then it is a Cauchy sequence

in Lp−
(Ω). Consequently, for any s > 0 and θ > 0, there exists n0 = n0(θ, s) such that :

∀ϵ1, ϵ2 ≥ n0, one has(∫
Ω

|Tk(uϵ1)− Tk(uϵ2)|p
−
dx

) 1

p−

≤
(
θsp

−

3

) 1

p−

.

Then, one deduces that

(4.43) meas(Eϵ1,ϵ2) ≤
1

p−

∫
Ω

|Tk(uϵ1)− Tk(uϵ2)|p
−
dx ≤ θ

3
.



36 I. KONATÉ and S. OUARO

Now, we fix k = k0(θ) and n0 = n0(θ, s). One can deduces from (4.41) and (4.43) that

meas{|uϵ1 − uϵ2 | > δ} ≤ θ for any ϵ1, ϵ2 ≥ n0,

which means that (uϵ)ϵ>0 is a Cauchy sequence in measure and there exists a subsequence
still denoted (uϵ)ϵ>0 and some measurable function u such that

uϵ −→ u a.e. in Ω.

Hence, σk = Tk(u) a.e. in Ω and so u ∈ T 1,p(.)(Ω). Therefore, Tk(u) ∈ domβ a.e. in Ω for
any k > 0. Consequently, u ∈ domβ a.e. in Ω (see [3]). □

We need the following strong convergence results.

Proposition 4.8. If uϵ is a solution of the approximate problem (Pgϵ
f,βϵ

), there exists a measurable
function u and a subsequence of (uϵ)ϵ>0 such that

(4.44) Tk(uϵ) → Tk(u) strongly in W 1,p(.)(Ω),

(4.45) ∇uϵ → ∇u a.e. in Ω,

(4.46) a(x, uϵ,∇uϵ)⇀ a(x, u,∇u) weakly in (Lp′(.)(Ω))N

and

(4.47) gϵ(x, uϵ,∇uϵ) → g(x, u,∇u) strongly in L1(Ω).

Proof. For any k ≥ 0, we shall use as test function

φϵ = φ(Tk(uϵ)− Tk(u)),

where

φ(s) = seαs
2

and α =

(
b(k)

λ

)2

.

It is well known (see [10], Lemma 1) that

(4.48) φ′(s)− b(k)

λ
|φ(s)| ≥ 1

2
, ∀s ∈ R.

Taking in (4.13) the test function φϵ, one obtains∫
Ω

βϵ(T 1
ϵ
(uϵ))φϵdx+

∫
Ω

a(x, uϵ,∇uϵ)∇φϵdx+

∫
Ω

gϵ(x, uϵ,∇uϵ)φϵdx

+ϵ

∫
Ω

|uϵ|p(x)−1|φϵ|dx =

∫
Ω

fφϵdx.

Since gϵ(x, uϵ,∇uϵ)φϵ ≥ 0 and βϵ(T 1
ϵ
(uϵ))φϵ ≥ 0 on {|uϵ| > k}, one deduces that∫

{|uϵ|≤k}
βϵ(T 1

ϵ
(uϵ))φϵdx+

∫
Ω

a(x, uϵ,∇uϵ)∇φϵdx+

∫
{|uϵ|≤k}

gϵ(x, uϵ,∇uϵ)φϵdx

(4.49) +ϵ

∫
Ω

|uϵ|p(x)−2uϵφϵdx ≤
∫
Ω

fϵφϵdx.

Since |uϵ|p(x)−1 −→ |u|p(x)−1 in Lp′(.)(Ω) and φϵ −→ 0 in L∞(Ω) as ϵ→ 0, one has∣∣∣∣ϵ∫
Ω

|uϵ|p(x)−2uϵφϵdx

∣∣∣∣ ≤ ϵ

∫
Ω

|uϵ|p(x)−1|φϵ|dx

−→ 0 as ϵ→ 0.



Nonlinear elliptic problem... 37

Then, one can write

(4.50) ϵ

∫
Ω

|uϵ|p(x)−2uϵφϵdx = η1(ϵ),

where η1(ϵ) is a sequence of real numbers which converges to zero as ϵ goes to 0. In the
sequel we will denote by ηi(ϵ), i = 1, 2, ... such sequences.
According to Lebesgue generalized convergence Theorem, one has

(4.51)
∫
Ω

fφϵdx = η1(ϵ).

Since the sequence (χ{|uϵ|≤k}βϵ(T 1
ϵ
(uϵ)))ϵ>0 is uniformly bounded, one deduces from the

Lebesgue dominated convergence theorem that

(4.52)
∫
{|uϵ|≤k}

βϵ(T 1
ϵ
(uϵ))φϵdx = η3(ϵ).

We now define, for any s and k in R, with k ≥ 0, Gk(s) = s − Tk(s). Then, using the
assumption (3.8) and the definition of functionGk(.), one can decompose the second term
of (4.49) as follows.∫

Ω

a(x, uϵ,∇uϵ) · ∇(Tk(uϵ)− Tk(u))φ
′(Tk(uϵ)− Tk(u))dx

=

∫
Ω

a(x, Tk(uϵ),∇Tk(uϵ)) · ∇(Tk(uϵ)− Tk(u))φ
′(Tk(uϵ)− Tk(u))dx

(4.53) +

∫
Ω

a(x, uϵ,∇Gk(uϵ)) · ∇(Tk(uϵ)− Tk(u))φ
′(Tk(uϵ)− Tk(u))dx.

Since ∇Tk(uϵ) is zero where ∇Gk(uϵ) is different to zero, and conversely, one has∫
Ω

a(x, uϵ,∇Gk(uϵ)) · ∇(Tk(uϵ)− Tk(u))φ
′(Tk(uϵ)− Tk(u))dx

= −
∫
Ω

a(x, uϵ,∇Gk(uϵ)) · ∇Tk(u)φ′(Tk(uϵ)− Tk(u))dx.

Since ∇Tk(uϵ) ≡ 0 on the set {|uϵ| ≥ k}, one has

∇Tk(u)χ{|uϵ|≥k} → 0, a.e. in Ω as ϵ→ 0.

Using the fact that ∇Tk(uϵ) ∈ (Lp′(.)(Ω))N , one deduces from the Lebesgue dominated
convergence theorem that

∇Tk(u)χ{|uϵ|≥k} → 0 strongly in (Lp′(.)(Ω))N , as ϵ→ 0.

Having in mind that (a(x, uϵ,∇Gk(uϵ)))ϵ>0 is bounded in (Lp′(.)(Ω))N , one obtains

(4.54)
∫
Ω

a(x, uϵ,∇Gk(uϵ)) · ∇(Tk(uϵ)− Tk(u))φ
′(Tk(uϵ)− Tk(u))dx = η3(ϵ) → 0.

Now we decompose the second term of (4.53) as follows.∫
Ω

a(x, uϵ,∇uϵ) · ∇(Tk(uϵ)− Tk(u))φ
′(Tk(uϵ)− Tk(u))dx

=

∫
Ω

[a(x, Tk(uϵ),∇Tk(uϵ))−a(x, Tk(uϵ),∇Tk(u))] ·∇(Tk(uϵ)−Tk(u))φ′(Tk(uϵ)−Tk(u))dx

+

∫
Ω

a(x, Tk(uϵ),∇Tk(u)) · ∇(Tk(uϵ)− Tk(u))φ
′(Tk(uϵ)− Tk(u))dx.
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Since Tk(uϵ) converges weakly to Tk(u) in W 1,p′(.)
0 (Ω) as ϵ→ 0, lim

ϵ→0
φ′(Tk(uϵ)−Tk(u)) = 0

and as the sequence (a(x, Tk(uϵ),∇Tk(u)))ϵ>0 is bounded in (Lp′(.)(Ω))N , one deduces
that

(4.55)
∫
Ω

a(x, Tk(uϵ),∇Tk(u)) · ∇(Tk(uϵ)− Tk(u))φ
′(Tk(uϵ)− Tk(u))dx = η4(ϵ).

Thus, putting together (4.54) and (4.55), follows

(4.56)
∫
Ω

a(x, uϵ,∇uϵ) · ∇(Tk(uϵ)− Tk(u))φ
′(Tk(uϵ)− Tk(u))dx =∫

Ω

[a(x, Tk(uϵ),∇Tk(uϵ))− a(x, Tk(uϵ),∇Tk(u))] · ∇(Tk(uϵ)− Tk(u))φ
′(Tk(uϵ)− Tk(u))dx

+η5(ϵ).

On the other hand, one has∣∣∣∣ ∫
{|uϵ|≤k}

gϵ(x, uϵ,∇uϵ)φϵdx

∣∣∣∣ ≤ ∫
{|uϵ|≤k}

|gϵ(x, uϵ,∇uϵ)||φϵ|dx

≤ b(k)

∫
Ω

(c(x) + |∇Tk(uϵ)|p(x))|φϵ|dx.

Since c belongs to L1(Ω) and lim
ϵ→0

φϵ = φ(0) = 0, one has

(4.57)
∫
Ω

c(x)|φϵ|dx = η5(ϵ).

Then, using (3.5), one has
(4.58)∣∣∣∣ ∫

{|uϵ|≤k}
gϵ(x, uϵ,∇uϵ)φϵdx

∣∣∣∣ ≤ b(k)

λ

∫
Ω

a(x, Tk(uϵ),∇Tk(uϵ)) · ∇Tk(uϵ)|φϵ|dx+ η5(ϵ).

Now we adding and subtracting to the above inequality the term

b(k)

λ

∫
Ω

a(x, Tk(uϵ),∇Tk(uϵ)) · ∇(Tk(uϵ)− Tk(u))|φϵ|dx,

to obtain
(4.59)

∣∣∣∣ ∫
{|uϵ|≤k}

gϵ(x, uϵ,∇uϵ)φϵdx

∣∣∣∣
≤ b(k)

λ

∫
Ω

(
a(x, Tk(uϵ),∇Tk(uϵ)− a(x, Tk(uϵ),∇Tk(u)

)
· ∇(Tk(uϵ)− Tk(u))|φϵ|dx

+ b(k)
λ

∫
Ω

a(x, Tk(uϵ),∇Tk(u)) · ∇Tk(u)|φϵ|dx+ η5(ϵ).

Since (a(x, Tk(uϵ),∇Tk(u)))ϵ>0 is bounded in (Lp′(.)(Ω))N and φϵ converges to zero as
ϵ→ 0, one has

b(k)

λ

∫
Ω

a(x, Tk(uϵ),∇Tk(u)) · ∇Tk(u)|φϵ|dx = η6(ϵ).
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Then, one deduces that

(4.60)



∣∣∣∣ ∫
{|uϵ|≤k}

gϵ(x, uϵ,∇uϵ)φϵdx

∣∣∣∣
≤ b(k)

λ

∫
Ω

(
a(x, Tk(uϵ),∇Tk(uϵ))− a(x, Tk(u),∇Tk(u))

)
×∇(Tk(uϵ)− Tk(u))|φϵ|dx+ η7(ϵ).

Putting (4.49) and (4.60) together, one deduces that∫
Ω

[a(x, Tk(uϵ),∇Tk(uϵ))− a(x, Tk(uϵ),∇Tk(u))] · ∇(Tk(uϵ)− Tk(u))

(4.61) ×[φ′
ϵ −

b(k)

λ
|φϵ|]dx ≤ η7(ϵ).

Then, using (4.48), one obtains

0 ≤ 1

2

∫
Ω

[a(x, Tk(uϵ),∇Tk(uϵ))− a(x, Tk(uϵ),∇Tk(u))] · ∇(Tk(uϵ)− Tk(u))dx ≤ η7(ϵ).

Therefore,

(4.62) lim
ϵ→0

∫
Ω

[a(x, Tk(uϵ),∇Tk(uϵ))− a(x, Tk(uϵ),∇Tk(u))] · ∇(Tk(uϵ)− Tk(u))dx = 0.

Using Lemma 3.3, as ϵ→ 0, one has

(4.63) Tk(uϵ) → Tk(u) in W 1,p(.)(Ω).

The strong convergence of Tk(uϵ) implies that for some subsequence, still denoted by uϵ,

∇uϵ → ∇u a.e. in Ω.

Since the functions a(x, ., .) and g(x, ., .) are continuous for a.e. x in Ω, one has

(4.64) a(x, uϵ,∇uϵ) → a(x, u,∇u) a.e. in Ω

and

(4.65) gϵ(x, uϵ,∇uϵ) → g(x, u,∇u) a.e. in Ω.

Since (a(x, uϵ,∇uϵ))ϵ>0 is bounded in (Lp′(.)(Ω))N , using (4.64) and Lemma 2.1, one gets

a(x, uϵ,∇uϵ)⇀ a(x, u,∇u) weakly in (Lp′(.)(Ω))N as ϵ→ 0.

□

Remark 4.2. One can also deduce from the above step that

ϵ|uϵ|p(x)−2uϵ −→ 0 a.e. in Ω as ϵ→ 0.

Note that the above strong convergence is not sufficient to pass to the limit, so we need
the following results.

Proposition 4.9.

(4.66) gϵ(x, uϵ,∇uϵ) → g(x, u,∇u) and ϵ|uϵ|p(x)−2uϵ −→ 0 strongly in L1(Ω) as ϵ→ 0.



40 I. KONATÉ and S. OUARO

Proof. One has

gϵ(x, uϵ,∇uϵ) → g(x, u,∇u) and ϵ|uϵ|p(x)−2uϵ −→ 0 a.e. in Ω.

According to Vitali’s theorem, it suffices to show that the sequences (gϵ(x, uϵ,∇uϵ))ϵ>0

and (ϵ|uϵ|p(x)−2uϵ)ϵ>0 are uniformly equi-integrable.
Taking φ = T1(uϵ − Tn(uϵ)) as test function in (4.13), one gets

(4.67)
∫
Ω

βϵ(T 1
ϵ
(uϵ))T1(uϵ − Tn(uϵ))dx+

∫
Ω

a(x, uϵ,∇uϵ).∇[T1(uϵ − Tn(uϵ))]dx

+

∫
Ω

gϵ(x, uϵ,∇uϵ)T1(uϵ − Tn(uϵ))dx+ ϵ

∫
Ω

|uϵ|p(x)−2uϵT1(uϵ − Tn(uϵ))dx

=

∫
Ω

fT1(uϵ − Tn(uϵ))dx.

Since T1(uϵ − Tn(uϵ)) has the same sign with uϵ and ∇T1(uϵ − Tn(uϵ)) = ∇uϵχ[n<uϵ≤n+1],
the first and the second terms of (4.67) are nonnegative. Then, one deduces that∫

{|uϵ|>n}
gϵ(x, uϵ,∇uϵ)T1(uϵ − Tn(uϵ))dx+ ϵ

∫
{|uϵ|>n}

|uϵ|p(x)−2uϵT1(uϵ − Tn(uϵ))dx

≤
∫
{|uϵ|>n}

|f |dx.

Since {|uϵ| ≥ n+ 1} ⊂ {|uϵ| > n}, one deduces from the above inequality that∫
{|uϵ|≥n+1}

|gϵ(x, uϵ,∇uϵ)|dx+ ϵ

∫
{|uϵ|≥n+1}

|uϵ|p(x)−1dx ≤ ∥f∥∞meas({|uϵ| > n}).

Since meas({|uϵ| > n}) −→ 0 as n→ ∞, one deduces that

lim
n→∞

lim sup
ϵ→0

(∫
{|uϵ|≥n+1}

|gϵ(x, uϵ,∇uϵ)|dx+ ϵ

∫
{|uϵ|≥n+1}

|uϵ|p(x)−1dx

)
= 0,

thus, for any γ > 0, there exists h(γ) > 0 such that

(4.68)
∫
{|uϵ|≥h(γ)}

|gϵ(x, uϵ,∇uϵ)|dx+ ϵ

∫
{|uϵ|≥h(γ)}

|uϵ|p(x)−1dx ≤ γ

2
.

For any measurable subset A ⊂ Ω, one has∫
A

|gϵ(x, uϵ,∇uϵ)|dx+ ϵ

∫
A

|uϵ|p(x)−1dx ≤ b(h(γ))

∫
A

(C(x) + |∇Th(γ)(uϵ)|p(x))dx

+

∫
{|uϵ|≥h(γ)}

|gϵ(x, uϵ,∇uϵ)|dx

+

∫
A

|Th(γ)(uϵ)|p(x)−1dx

(4.69) +ϵ

∫
{|uϵ|≥h(γ)}

|uϵ|p(x)−1dx.

According to (4.44), there exists θ(γ) > 0 such that, for all A ⊆ Ω with meas(A) ≤ θ(γ),

(4.70) b(h(γ))

∫
A

(C(x) + |∇Th(γ)(uϵ)|p(x))dx+ ϵ

∫
A

|uϵ|p(x)−1dx ≤ γ

2
.

Combining (4.68), (4.69) and (4.70), one has

(4.71)
∫
A

|gϵ(x, uϵ,∇uϵ)|dx+ ϵ

∫
A

|uϵ|p(x)−1dx ≤ γ,
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for all A ⊆ Ω such that meas(A) ≤ θ(γ).
Now, we conclude that the sequences (gϵ(x, uϵ,∇uϵ))ϵ>0 and (ϵ|uϵ|p(x)−2uϵ)ϵ>0 are equi-
integrable. Then, from Vitali’s theorem one deduces (4.66).
Based on the above convergence results, we pass to the limit in (4.13) as ϵ→ 0 to get∫

Ω

bφdx+

∫
Ω

a(x, u,∇u)∇φdx+

∫
Ω

g(x, u,∇u)φdx =

∫
Ω

fφdx.

We conclude the proof of Theorem 4.3 by writing u ∈ D(β) and b ∈ β(u) almost every-
where in Ω (see [3]). □
4.2. Proof of the case f ∈ L1(Ω).
This section is devoted to the proof of Theorem 4.3, Theorem 5.5 and Theorem 5.6 for the
case where the datum f belongs to L1(Ω). To this end, we divide our arguments into sev-
eral steps.
Step 1. The approximated problem For each n ∈ N, we consider the following approxi-
mated problem.

(Pg
fn,β

)

 β(un)− diva(x, un,∇un) + g(x, un,∇un) ∋ fn in Ω,

a(x, un,∇un) · ν = 0 on ∂Ω,

where fn is a sequence of L∞-functions which converges strongly to f in L1(Ω) and |fn| ≤
|f |. For example, one can choose fn = Tn(f).
Thanks to Section 4, there exists a solution (un, bn) ∈ W 1,p(.)(Ω)× L∞(Ω) of (Pg

fn,β
) such

that

(4.72)
∫
Ω

bnφdx+

∫
Ω

a(x, un,∇un)Dφdx+

∫
Ω

g(x, un,∇un)φdx =

∫
Ω

fnφdx,

for all φ ∈W 1,p(.)(Ω) ∩ L∞(Ω).
Step 2. The a priori estimates

Lemma 4.7. For n ∈ N, let (un, bn) ∈W 1,p(.)(Ω)× L∞(Ω) be a solution of (Pg
fn,β

).
For any k ≥ 1, there exists a constant C2 > 0 not depending on k such that

(4.73) ∥∇Tk(un)∥p(.) ≤ C2k
1
γ

and

(4.74) ∥bn∥L1(Ω) ≤ ∥f∥L1(Ω).

Proof. Taking Tk(un) as a test function in (4.72), one obtains∫
Ω

bnTk(un)dx+

∫
Ω

a(x, un,∇un)∇Tk(un)dx+

∫
Ω

g(x, un,∇un)Tk(un)dx

(4.75) =

∫
Ω

fTk(un)dx.

Since the first term on the left hand side of (4.75) is nonnegative and g verifies the sign
condition, from (3.5), one deduces that∫

Ω

|∇Tk(un)|p(x)dx ≤
k∥f∥L1(Ω)

λ
.

Using Proposition 2.1, one gets

∥∇Tk(un)∥γp(.) ≤
k∥f∥L1(Ω)

λ
.
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Then,
∥∇Tk(un)∥p(x) ≤ C6k

1
γ for all k ≥ 1,

where C6 :=

(
∥f∥L1(Ω)

λ

) 1
γ

.

Since
∫
Ω

bnTk(un)dx ≥ 0 and
∫
Ω

g(x, un,∇un)Tk(un)dx ≥ 0, we deduce from (4.75) that∫
Ω

bnTk(un)dx ≤
∫
Ω

fTk(un)dx ≤ k∥f∥L1(Ω).

Dividing the above inequality by k > 0, one obtains∫
Ω

bn
1

k
Tk(un)dx ≤ ∥f∥L1(Ω).

Since bn ∈ β(un) a.e. in Ω and lim
k→∞

1

k
Tk(un) = sign0(un), we pass to the limit as k → ∞

to get ∫
Ω

|bn|dx ≤ ∥f∥L1(Ω).

□

Step 3. Basic convergence results and Passage to the limit

Lemma 4.8. For n ∈ N, let (un, bn) ∈ W 1,p(.)(Ω) × L∞(Ω) be a solution of (Pg
fn,β

). Then, as
n→ ∞, one has

(4.76) bn ⇀ b weakly in L1(Ω),

(4.77) un → u a.e. in Ω,

(4.78) Tk(un)⇀ Tk(u) in W 1,p(.)(Ω),

(4.79) Tk(un) → Tk(u) in Lp(.)(Ω) and a.e. in Ω.

Proof. Let (uϵn, bϵn) be a solution of the following problem.
βϵ(T 1

ϵ
(uϵn))− diva(x, uϵn,∇uϵn) + g(x, uϵn,∇uϵn) = fn in Ω

a(x, uϵn,∇uϵn) · ν = 0 on ∂Ω.

The proof of (4.76) follows the same line as in [3].
From Lemma 4.6, one has

(4.80)
∫
Ω

(|βϵ(T 1
ϵ
(uϵn))| − k)+dx ≤

∫
Ω

(|fn| − k)+dx.

Since βϵ(T 1
ϵ
(uϵn))⇀ bn in L∞(Ω) as ϵ goes to 0, one gets

(4.81)
∫
Ω

(|bn| − k)+dx ≤
∫
Ω

(|fn| − k)+dx.

Remark 4.3. One has

(4.82) lim
k→∞

meas({|fn| ≥ k}) = 0,

(4.83) lim
k→∞

∫
Ω

(|fn| − k)+dx = 0
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and

(4.84) lim
k→∞

kmeas({|bn| ≥ k}) = 0.

Indeed,

since
∫
Ω

|fn|dx ≤
∫
Ω

|f |dx = ∥f∥1, passing to the limit as k → ∞ in the inequality

meas({|fn| ≥ k}) ≤ 1

k

∫
Ω

|fn|dx,

one obtains (4.82).
Since A := (fn)n∈N ⊂ L1(Ω) and |fn| ≤ |f | ∈ L1(Ω) for any n ∈ N, according to Proposition
2.4, the sequence (fn)n∈N is uniformly integrable.∫

Ω

(|fn| − k)+dx =

∫
{|fn|≥k}

|fn|dx− kmeas({|fn| ≥ k})

≤
∫
{|fn|≥k}

|fn|dx

≤ sup
fn∈A

∫
{|fn|≥k}

|fn|dx.

Then, passing to the limit in the above inequality as k → ∞, one deduces (4.83).

Claim: The sequence (bn)n∈N converges weakly to a function b in L1(Ω) as n→ ∞.
Indeed, ∫

{|fn|≥k}
|bn|dx =

∫
Ω

(|bn| − k)+dx+ kmeas({|bn| ≥ k})

≤
∫
Ω

(|fn| − k)+dx+ kmeas({|bn| ≥ k}).

Using (4.84), one has

lim
k→∞

sup
fn∈F

(∫
{|fn|≥k}

|bn|dx
)

= 0.

Therefore, the sequence (bn)n∈N is uniformly integrable. Then, one can deduce from The-
orem 2.2 that it is relatively weakly compact in L1(Ω).
Therefore, one deduces that there exists a subsequence still denoted (bn)n∈N such that

bn ⇀ b weakly in L1(Ω) as n→ ∞.

Thanks to (4.73), the convergences (4.77), (4.78) and (4.79) hold (see the proofs of Proposi-
tion 4.7 and Proposition 4.8). □

Lemma 4.9. For n ∈ N, let (un, bn) ∈W 1,p(.)(Ω)×L∞(Ω) be a solution of (Pg
fn,β

). As n→ ∞,
one has

(4.85) Tk(un) → Tk(u) strongly in W 1,p(.)
0 (Ω),

(4.86) ∇un → ∇u a.e. in Ω,

(4.87) a(x, un,∇un) → a(x, u,∇u) a.e. in Ω,

(4.88) gϵ(x, un,∇un) → g(x, u,∇u) a.e. in Ω

and

(4.89) a(x, un,∇un)⇀ a(x, u,∇u) weakly in (Lp′(.)(Ω))N .
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Proof. For any k ≥ 0, we define the function

φn = φ(Tk(un)− Tk(u)),

where

φ(s) = seαs
2

and α =

(
b(k)

λ

)2

.

By taking φn as test function in (4.72), we get

(4.90)
∫
Ω

bnφndx+

∫
Ω

a(x, un,∇un)∇φndx+

∫
Ω

g(x, un,∇un)φndx =

∫
Ω

fnφndx.

Let us denote by η1(n), η2(n), ..., various sequences of real numbers which converge to
zero as n→ ∞.
Since φn

∗
⇀ 0 in L∞(Ω) and fn → f in L1(Ω) as n→ ∞, one has∫

Ω

fnφndx = η1(n).

As

(4.91)
∫
Ω

bnφndx =

∫
{|un|≤k}

bnφndx+

∫
{|un|>k}

bnφndx

and bn ∈ β(un), the second term of (4.91) is nonnegative.
Notice that the function χ{|un|≤k}bn is uniformly bounded, then we can use the Lebesgue
dominated convergence theorem to get∫

{|un|≤k}
bnφndx = η2(n).

Therefore, one deduces from (4.90) that

(4.92)
∫
Ω

a(x, un,∇un)∇φndx+

∫
Ω

g(x, un,∇un)φndx ≤ η3(n).

Reasoning similarly as in the proof of Proposition 4.8, one deduces that

(4.93) lim
n→∞

∫
Ω

[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u))] · ∇(Tk(un)− Tk(u))dx = 0.

Using Lemma 3.3, one has

Tk(un) → Tk(u) in W 1,p(.)(Ω),

thus,
∇un → ∇u a.e. in Ω.

One also deduces that

a(x, un,∇un) → a(x, u,∇u) a.e. in Ω

and
gn(x, un,∇un) → g(x, u,∇u) a.e. in Ω.

Since the sequence (a(x, un,∇un))n∈N is bounded in (Lp′(.)(Ω))N , one has

a(x, un,∇un)⇀ a(x, u,∇u) weakly in (Lp′(.)(Ω))N .

□

Proposition 4.10. If un is a solution of (Pg
fn,β

), then

(4.94) gn(x, un,∇un) → g(x, u,∇u) strongly in L1(Ω).
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Proof. Since gn(x, un,∇un) −→ g(x, u,∇u) a.e. in Ω as n → ∞, thanks to (3.10), it suffice
to prove that g(x, un,∇un) is uniformly equi-integrable.
For any measurable subset E of Ω and for any m ∈ R+, one has∫
E

|gn(x, un,∇un)|dx =

∫
E∩{|un|≤m}

|gn(x, un,∇un)|dx+

∫
E∩{|un|>m}

|gn(x, un,∇un)|dx

=

∫
E∩{|un|≤m}

|gn(x, Tm(un), DTm(un))|dx+

∫
E∩{|un|>m}

|gn(x, un,∇un)|dx

≤ b(m)

∫
E

(C(x) + |∇Tm(un)|p(x))dx+

∫
E∩{|un|>m}

|gn(x, un,∇un)|dx

(4.95) = L1 + L2.

For fixed m in N, one has

L1 ≤ b(m)

∫
E

(C(x) + |∇Tm(un)|p(x))dx,

which is small, uniformly in ϵ for fixed m when the measure of E is small (remark that
(∇Tm(un))n∈N converges strongly in (Lp(.)(Ω))N as n→ ∞).
We treat the second term of (4.95) by using the test function Sm(un) in (4.72), where for
m > 1, Sm is defined as follows.

Sm(s) = 0, if |s| ≤ m− 1,

Sm(s) = |s|
s , if |s| ≥ m,

S′
m(s) = 1, if m− 1 ≤ |s| ≤ m.

It follows that∫
Ω

bnSm(un)dx+

∫
Ω

a(x, un,∇un)∇unS′
m(un)dx+

∫
Ω

g(x, un,∇un)Sm(un)dx

=

∫
Ω

fSm(un)dx.

Using fact that the function βn ◦T 1
n

is nondecreasing, Sm is increasing on {m− 1 ≤ |un| ≤
m} and gn verifies the sign condition, one deduces that∫

{m−1≤|un|≤m}
a(x, un,∇un)∇undx+

∫
{|un|>m−1}

|g(x, un,∇un)|dx

≤
∫
{|un|>m−1}

|fn|dx.

Using (3.5), one obtains

(4.96)



λ

∫
{m−1≤|un|≤m}

|∇un|p(x)dx+

∫
{|un|>m−1}

|g(x, un,∇un)|dx

≤
∫
{m−1≤|un|≤m}

a(x, un,∇un)∇undx+

∫
{|un|>m−1}

|g(x, un,∇un)|dx

≤
∫
{|un|>m−1}

|fn|dx.
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It follows that ∫
{|un|>m−1}

|g(x, un,∇un)|dx ≤
∫
{|un|≥m−1}

|f |dx,

then

lim sup
n→∞

∫
{|un|>m−1}

|g(x, un,∇un)|dx ≤
∫
{|u|>m−1}

|f |dx.

Thus, L2 is also small, uniformly in n and in E when m is sufficiently large and one
deduces that gn(x, un,∇un) is uniformly equi-integrable in Ω.
In view of Vitali’s theorem, one has

gn(x, un,∇un) → g(x, u,∇u) strongly in L1(Ω).

□

Thanks to the above convergences results, one can pass to the limit in (4.72) as n → ∞ to
obtain ∫

Ω

bφdx+

∫
Ω

a(x, u,∇u)∇φdx+

∫
Ω

g(x, u,∇u)φdx =

∫
Ω

fφdx,

for any φ ∈W 1,p(.)(Ω) ∩ L∞(Ω). □

5. EXISTENCE OF ENTROPY AND RENORMALIZED SOLUTION

5.1. Existence of Entropy solution.
Here, we present our second main result. We prove the existence of entropy solutions of
problem (Pg

f,β) for any datum f in L1(Ω).

Theorem 5.5. For f ∈ L1(Ω), there exists at least one entropy solution (u, b) ∈ T 1,p(.)(Ω) ×
L1(Ω) of problem (Pg

f,β) in the sense that b(x) ∈ β(u(x)) a.e. in Ω, g(x, u,∇u) ∈ L1(Ω) and∫
Ω

bTk(u− v)dx+

∫
Ω

a(x, u,∇u)DTk(u− v)dx+

∫
Ω

g(x, u,∇u)Tk(u− v)dx

(5.97) ≤
∫
Ω

fTk(u− v)dx,

for any v ∈W 1,p(.)(Ω) ∩ L∞(Ω).

Proof. Let us consider the approximating problem (Pg
fn,β

) and its sequence of solutions
(un, bn) defined as in Section 5. For any v ∈W 1,p(.)(Ω) ∩ L∞(Ω), taking Tk(un − v) as test
function in (4.72) and setting M = k + ∥v∥∞, one obtains∫

Ω

bnTk(un − v)dx+

∫
Ω

a(x, un,∇un)∇Tk(un − v)dx+

∫
Ω

gn(x, un,∇un)Tk(un − v)dx

(5.98) =

∫
Ω

fnTk(un − v)dx.
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Notice that if |un| ≥ M , then |un − v| ≥ |un| − ∥v∥∞ > k. Therefore, {|un − v| ≤ k} ⊆
{|un| ≤M}, which gives

∫
Ω

a(x, un,∇un)∇Tk(un − v)dx

=

∫
Ω

a(x, TM (un),∇TM (un))(∇TM (un)−∇v)χ{un−v|≤k}dx

=

∫
Ω

(a(x, TM (un),∇TM (un)− a(x, TM (un),∇v))(∇TM (un)−∇v)χ{un−v|≤k}dx

+

∫
Ω

a(x, TM (un),∇v)(∇TM (un)−∇v)χ{un−v|≤k}dx.

Using Fatou’s Lemma, one gets

(5.99)



lim inf
n→∞

∫
Ω

a(x, un,∇un)∇Tk(un − v)dx

≥
∫
Ω

(a(x, TM (u),∇TM (u) − a(x, TM (u),∇v))(∇TM (u)−∇v)χ{u−v|≤k}dx

+ lim
n→∞

∫
Ω

a(x, TM (un),∇v)(∇TM (un)−∇v)χ{un−v|≤k}dx.

Since 
lim
n→∞

∫
Ω

a(x, TM (un),∇v)(∇TM (un)−∇v)χ{un−v|≤k}dx

=

∫
Ω

a(x, TM (u),∇v)(∇TM (u)−∇v)χ{u−v|≤k}dx,

one deduces from (5.99), that

lim inf
n→∞

∫
Ω

a(x, un,∇un)∇Tk(un − v)dx

≥
∫
Ω

a(x, TM (u),∇v)(∇TM (u)−∇v)χ{u−v|≤k}dx

=

∫
Ω

a(x, TM (u),∇v)(∇TM (u)−∇v)χ{u−v|≤k}dx

=

∫
Ω

a(x, TM (u),∇v)∇Tk(u− v)dx.

Since Tk(un − v)
∗
⇀ Tk(u − v) in L∞(Ω) and gn(x, un,∇un) → g(x, u,∇u) in L1(Ω) as

n→ ∞, one deduces that

(5.100)
∫
Ω

gn(x, un,∇un)Tk(un − v)dx −→
∫
Ω

g(x, u,∇u)Tk(u− v)dx.

By using Lebesgue dominated convergence theorem, one obtains

(5.101)
∫
Ω

fnTk(un − v)dx→
∫
Ω

fTk(u− v)dx.
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Since bn ⇀ b weakly in L1(Ω) and Tk(un − v)
∗
⇀ Tk(u− v) in L∞(Ω) as n→ ∞, it follows

that

(5.102)
∫
Ω

bnTk(un − v)dx→
∫
Ω

bTk(u− v)dx.

By passing to the limit in (4.72) as n→ ∞, one obtains the entropy inequality (5.97). □
5.2. Existence of renormalized solution.
In this section, we prove that an entropy solution is also a renormalized solution of prob-
lem (Pg

f,β).

Theorem 5.6. For f ∈ L1(Ω), there exists at least one renormalized solution (u, b) ∈W 1,p(.)(Ω)×
L1(Ω) of problem (Pg

f,β) in the sense that b(x) ∈ β(u(x)) a.e. in Ω, g(x, u,∇u) ∈ L1(Ω),∫
Ω

bS(u)vdx+

∫
Ω

a(x, u,∇u)(S′(u)v∇u+ S(u)∇v)dx+

∫
Ω

g(x, u,∇u)S(u)vdx

(5.103) =

∫
Ω

fS(u)vdx

and

(5.104) lim
l→+∞

∫
{l≤|u|≤l+1}

|∇u|p(x)dx = 0,

for any v ∈ W 1,p(.)(Ω) ∩ L∞(Ω) and for any smooth function S ∈ W 1,∞(Ω) with compact
support.

Proof. Let us start by proving that (5.104) holds.
Let u be an entropy solution of (Pg

f,β). According to (4.96), one has

λ

∫
{l≤|un|≤l+1}

|∇un|p(x)dx+

∫
{|un|>l}

|g(x, un,∇un)|dx ≤
∫
{|un|>l}

|fn|dx,

thus,

λ

∫
{l≤|un|≤l+1}

|∇un|p(x)dx ≤
∫
{|un|>l}

|fn|dx.

Then, letting n→ ∞ and l → ∞ successively, one obtains (5.104).
Let (un)n∈N be a sequence of weak solution of (4.72) and S ∈W 1,∞(Ω) such that suppS ⊂
[−M,M ] for some M > 0. We already know from Lemma 4.85 that

for any k > 0, Tk(un) → Tk(u) strongly in W 1,p(.)(Ω) as n→ ∞.

For any v ∈ C∞
0 (Ω), we choose S(un)v ∈W 1,p(.)(Ω) as test function in (4.72) to obtain∫
Ω

bnS(un)vdx+

∫
Ω

a(x, un,∇un)(S′(un)v∇un + S(un)∇v)dx

(5.105) +

∫
Ω

gn(x, un,∇un)S(un)vdx =

∫
Ω

fnS(un)vdx.

Since S(un)v
∗
⇀ S(u)v in L∞(Ω) as n→ ∞, one deduces that

(5.106)
∫
Ω

bnS(un)vdx→
∫
Ω

bS(u)vdx,

(5.107)
∫
Ω

g(x, un,∇un)S(un)vdx→
∫
Ω

g(x, u,∇u)S(u)vdx
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and

(5.108)
∫
Ω

fnS(un)vdx→
∫
Ω

fS(u)vdx.

It remain to treat the second term of the left on side of (5.105).
Indeed, one has ∫

Ω

a(x, un,∇un)(S′(un)v∇un + S(un)∇v)dx

=

∫
Ω

a(x, TM (un),∇TM (un))(S
′(un)v∇TM (un) + S(un)∇v)dx.

Thanks to (3.6), (a(x, TM (un),∇TM (un)))n∈N is bounded in (Lp′(.)(Ω))N and

a(x, TM (un),∇TM (un)) → a(x, TM (u),∇TM (u)) a.e. in Ω.

Then, using Lemma 2.2, one obtains

a(x, TM (un),∇TM (un))⇀ a(x, TM (u),∇TM (u)) weakly in (Lp′(.)(Ω))N .

As n→ ∞, one has

(S′(un)v∇TM (un) + S(un)∇v) → (S′(u)v∇TM (u) + S(u)∇v) strongly in (Lp′(.)(Ω))N ,

then

lim
n→∞

∫
Ω

a(x, TM (un),∇TM (un))(S
′(un)v∇TM (un) + S(un)∇v)dx

=

∫
Ω

a(x, TM (u),∇TM (u))(S′(u)v∇TM (u) + S(u)∇v)dx

(5.109) =

∫
Ω

a(x, u,∇u)(S′(u)v∇u+ S(u)∇v)dx.

Since (5.106)-(5.109) hold, passing to the limit in (5.105) as n → ∞, one obtains the renor-
malized equality (5.103), which is∫

Ω

bS(u)vdx+

∫
Ω

a(x, u,∇u)(S′(u)v∇u+ S(u)∇v)dx+

∫
Ω

g(x, u,∇u)S(u)vdx

=

∫
Ω

fS(u)vdx.

□

6. CONCLUSION

In the present article, we investigated the existence of weak and renormalized solu-
tions of a class of multivalued Neumann boundary problem governed by the general
p(.)-Leray-Lions type operator and involving a natural growth term and L1 data. We
also established that a renormalized solution coincides with an entropy one. Resulting
equations are solved by approximation method and the technic of monotone operators in
Banach spaces. This contribution provides important arguments whose permit to control
the natural growth term. As far as the previous literature is concerned, a big step has al-
ready been taken (see [3]) in the study of this problem in the non-homogeneous Dirichlet
framework. The main feature of this work is the fact that its extends the study of nonlin-
ear elliptic problems into the framework of maximal monotone graph under Neumann
boundary condition in variable exponent spaces.
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