
CREAT. MATH. INFORM.
Volume 34 (2025), No. 1,
Pages 143-154

Online version at https://creative-mathematics.cunbm.utcluj.ro/

Print Edition: ISSN 1584 - 286X; Online Edition: ISSN 1843 - 441X

DOI: https://doi.org/10.37193/CMI.2025.01.13

Uniqueness of Shift Polynomials and Derivative Sharing
Polynomial

HARINA P. WAGHAMORE AND MANJUNATH B. E.

ABSTRACT. This research aims to establish a significant uniqueness theorem concerning shift polynomials
and derivative-sharing polynomials connected to meromorphic functions. The study provides an example high-
lighting the constraints’ significance in this context. The resulting theorem expands the existing literature under
certain appropriate conditions.

1. PRELIMINARIES

In this paper, when we mention a meromorphic function, we are referring to a function
that exhibits meromorphic behavior across the entire complex plane, as symbolized by C.
We assume that the reader is familiar with the conventional notations and important re-
sults of Nevanlinna theory regarding the value distribution of meromorphic functions(see
[4]). Let D = {f : f is non-constant meromorphic function in C}. For the context of our
study, we use the notation n(r,∞; f) to signify the count of poles of the function f within
the region defined by |z| < r, with each pole taken into account along with its respective
multiplicities.

Definition 1.1. [17]

N (r,∞; f) =

∫ r

0

n(t,∞; f)− n(0,∞; f)

t
dt+ n(0,∞; f) log r

is referred to as the integrated counting function or, simply, the pole counting function of the
function f .

The proximity function describing the poles of function f can be represented as follows
m(r,∞; f) = 1

2π

∫ 2π

0
log+ | f

(
reiθ

)
| dθ, where

log+ x =

{
x, if x ≥ 1,

0, if 0 ≤ x < 1

The Nevanlinna characteristic function T (r, f) of f is expressed as the combination of two
components: the quantity m(r,∞; f) and the integrated counting function N (r,∞; f),
which together give rise to T (r, f). We use the conventional notation S(r, f) for any quan-
tity that satisfies the relationship S(r,f)

T (r,f) → 0 as r tends to infinity, with the exception of a
finite set of linear measure.
For a ∈ C, we write m(r, a; f) = m

(
r,∞; 1

f−a

)
and N(r, a; f) = N

(
r,∞; 1

f−a

)
.

Again let us denote by n(r, a; f) the number of distinct a points of f lying in | z |< r,
where a ∈ C

⋃
{∞}.
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Definition 1.2. [4] Consider a positive integer, denoted as k, and an element a belonging to the set
C∪{∞}. We employ the notationsNk)(r, a; f) andN(k(r, a; f) to represent the counting function
of a-points in the function f with multiplicity not exceeding k and the counting function of a-
points of f with multiplicity greater than k, respectively. Similarly, Nk)(r, a; f) and N (k(r, a; f)
denote the corresponding reduced functions. For a ∈ C and a positive integer p, we use the
notation Np(r, a; f) to represent the sum N (1(r, a; f) +N (2(r, a; f) + · · ·+N (p(r, a; f).

Consider two non-constant meromorphic functions, denoted as f(z) and g(z). Let a(z)
be a small function concerning both f(z) and g(z). If the zeros of f(z)−a(z) and g(z)−a(z)
are identical in number and multiplicity, we refer to f(z) and g(z) as sharing a(z) with CM
(Counting Multiplicities). When we disregard the multiplicities, we say that f(z) and g(z)
share a(z) with IM (Ignoring Multiplicities).
A noteworthy subtopic within the uniqueness theory is the shared values, functions, or
sets between a meromorphic function and its derivative.

The study of difference equations and products in the complex plane has become a
focal point for many mathematicians in recent years. Numerous publications have ex-
plored the value distribution of differences and difference operators within the context of
Nevanlinna theory.

Rubel and Yang were the forefront leaders in the investigation of entire functions that
exhibit shared values with their derivatives. In 1977, they established the following sig-
nificant theorem.

Theorem 1. [12] Let a and b be complex numbers such that b ̸= a and let f(z) be a non-constant
entire function. If f(z) and f ′(z) share the values a and b CM, then f ≡ f ′.

Subsequently, this outcome has undergone numerous extensions and enhancements[18].
Recent studies have further expanded on these concepts. For instance, Priyanka V. et
al. [11] examined the uniqueness of differential-difference polynomials of meromorphic
functions sharing shift polynomial and small function. Tejuswini and Shilpa [16] investi-
gated the unicity of shift polynomials generated by meromorphic functions.
In 1980, G. G. Gundersen enhanced Theorem 1 and derived the subsequent result.

Theorem 2. [3] Let f be a non-constant meromorphic function, a and b be two distinct finite
values. If f and f ′ share the values a and b CM, then f ≡ f ′.

In 2009, Zhang gave the following noteworthy result

Theorem 3. [19] Let f(z) ∈ D and n(≥ 7) ∈ Z. If fn and (fn)
′ share 1 CM, then fn ≡ (fn)

′

and f assumes the form f(z) = ce(
z
n ), where c ̸= 0 is a constant.

Over time, the initial result evolved, extending from the first derivative to the kth de-
rivative, and the concept of sharing small functions was introduced in the same article, as
follows:

Theorem 4. [19] Let f(z) ∈ D, n, k ∈ Z+ and a(z)( ̸≡ 0,∞) be a small function of f . If suppose
fn−a and (fn)

(k)−a share the value 0 CM and (n−k−1)(n−k−4) > 3k+6, then fn ≡ (fn)
(k)

and f assumes the form f(z) = c1e
(λz

n ), where c1 is a non zero constant and λk = 1.

Theorem 4’s outcome was derived under a different prerequisite condition for the shar-
ing of small function a CM and a IM in [20]. Many authors have followed this trend,
incorporating various sharing conditions for fn and (fn)

(k), such as set sharing, two dis-
tinct polynomial sharing [10], and so on. For related studies, please refer to [8, 15, 19].
Further contributions to this field include the work of Saha et al. [14], who explored
the uniqueness of certain types of shift polynomials sharing a small function. Saha [13]
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also independently studied the uniqueness of certain types of shift polynomials sharing
a small function. Earlier, Majumder [7] had investigated the uniqueness of certain types
of shift polynomials sharing a small function, providing a foundation for subsequent re-
search in this area. Lahiri and Majumder, in [6], established the uniqueness theorem for
fn and (fn)

(k) sharing two distinct small functions, by introducing the idea of weighted
sharing. The notable result is detailed below:

Theorem 5. [6] Let the transcendental function f ∈ D such that N(r, f) = S(r, f) and ai =
ai(z)(̸≡ 0, ∞) be small functions of f , where i = 1, 2. Let n, k ∈ Z+ such that n ≥ k + 1. In
addition if fn − a1 and (fn)

(k) − a2 share (0, 1), then (fn)
(k) ≡ a2

a1
fn. Furthermore, if a1 ≡ a2,

then the conclusion of Theorem 4 holds.

With the emergence of difference analogue in Nevanlinna theory, uniqueness theorems
have also developed correspondingly. Additionally, researchers have devoted consid-
erable attention to investigating the uniqueness properties of differences and difference
polynomials of meromorphic functions, yielding several noteworthy findings. Pursuing
this line of thought, Majumder-Saha [9] provided the following result:

Theorem 6. [9] Let the transcendental function f ∈ D be of finite order with finitely many poles.
For constant c(̸= 0) ∈ C, n, k ∈ N, let fn(z) − Q1 and (fn(z + c))

(k) − Q2 share (0, 1) and
f(z), f(z + c) share 0 CM. If n ≥ k + 1, then (fn(z + c))

(k) ≡ Q1

Q2
fn(z), where Q1, Q2 are

polynomials withQ1Q2 ̸≡ 0. Furthermore, if Q1 = Q2, then the conclusion of Theorem 4 holds.

2. MAIN RESULT

An intriguing avenue of investigation is to examine the consequences of Theorem F
when we replace fn(z) with fn(z)Ψf(z) and (fn(z + c))

(k) with
(
fn(z + c)Ψf(z+c)

)(k).
Drawing inspiration from this, we present the primary result of the paper below:

Throughout this article the term, Ψf(z), will be defined as

(2.1) Ψf(z) = a2f
2(z) + a1f(z) + 1.

Here, a2 and a1 are constants.

Theorem 2.1. Let the transcendental function f ∈ D be of finite order with finitely many
poles. Let c( ̸= 0) ∈ C, n, k ∈ N and Ψf(z) be defined as in 2.1. If fn(z)Ψf(z) − P1(z) and(
fn(z + c)Ψf(z+c)

)(k) −P2(z) share (0, 1) such that f(z), f(z + c) share 0 CM with n ≥ k+ 3

then
(
fn(z + c)Ψf(z+c)

)(k) ≡ P1

P2
fn(z)Ψf(z). Here, P1, P2 are polynomials with P1P2 ̸≡ 0. In

addition, if P1 = P2, then f(z) = Ce
ϱz
n+i for i ∈ {0, 1, 2}, C, ϱ are constant such that eϱC = 1

and ϱk = 1.

Remark 2.1. When we set a2 = a1 = 0 in Theorem 2.1, Ψf(z) reduces to 1, and the conclusion
of Theorem 6 remains valid. Consequently, the primary contribution of this paper is an extension
of the results previously established in [9].

Example 2.1. Consider f(z) = ez − 1, c = 2πi. Substituting a2 = 0, a1 = 1
2 into (2.1),

we obtain Ψf(z) = f(z)
2 + 1. It is evident that f(z) and f(z + c) share 0 CM . For P1 =

1 and P2 = 8, both
[
f(z)Ψf(z) − P1

]
and

[
f(z + c)Ψf(z+c) − P2

](2) share 0 CM. However,[
f(z + c)Ψf(z+c)

](2) ̸≡ P2

P1

[
f(z)Ψf(z)

]
due to the condition n ≥ k + 3 not being satisfied.
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3. SUPPORTING RESULTS

Lemma 3.1. [2] Let f ∈ D of finte order and c be non zero complex constant then

m

(
r,
f(z + c)

f(z)

)
+m

(
r,

f(z)

f(z + c)

)
= S(r, f),(3.2)

T (r, f(z + c)) = T (r, f) + S(r, f).(3.3)

Lemma 3.2. [4, Lemma 3.5] Suppose that F is meromorphic function in a domain D and set
f = F ′

F . Then for n ≥ 1

F (k)

F
= fn +

n(n− 1)

2
fn−2f ′ + anf

n−3f ′′ + bnf
n−4 (f ′)

2
+ Pn−3(f)

where an = 1
6n(n − 1)(n − 2), bn = 1

8n(n − 1)(n − 2)(n − 3) and Pn−3(f) is a differential
polynomial with constant coefficients, which vanishes identically for n ≤ 3 and has degree n − 3
when n > 3.

Lemma 3.3. [5] Let f ∈ D of finte order and c be non zero complex constant. Let P (f, z) be
a polynomial in f(z + c) and its derivatives and Q(z, f) be a polynomial in f(z), f(z + c)
and its derivatives with meromorphic coefficients aλ, λ ∈ Z such that m(r, aλ) = S(r, f). If
fnP (z, f) = Q(z, f) and the total degree of Q(z, f) is n then

m(r, P (z, f)) = S(r, f).

4. PROOF OF THEOREM

Let

(4.4) F = fn(z)Ψf(z) and G =
[
fn(z + c)Ψf(z+c)

](k)
.

Set

(4.5) F1(z) =
F

P1(z)
and G1(z) =

G
P2(z)

Disregarding the zeros of Pi(z), i = 1, 2, it is evident that F1(z) and G1(z) share (1, 1). As
a result, N

(
r, 1

F1−1

)
= N

(
r, 1

G1−1

)
+ S(r, f).

By Lemma 3.1, we conclude that m
(
r, G

F
)
= S(r, f).

Define

(4.6) ϕ =
F ′

1(F1 − G1)

F1(F1 − 1)
.

Case 1. Let’s start by considering that ϕ is not identically zero. Clearly, m(r, ϕ) equals
S(r, f). Let’s take z0 as a zero of f(z) with a multiplicity of p (greater than or equal to 1)
and as a zero of Ψf(z) with a multiplicity q (greater than or equal to 1), excluding the zeros
of Pi, i = 1, 2. Since f(z) and f(z + c) share 0 CM, it is observed that z0 is also a zero of
f(z+ c) with the same multiplicity p, and it is a zero of Ψf(z+c) with the same multiplicity
q.
Based on equation (4.5), z0 will serve as a zero for both F1 and G1, possessing multiplicities
of np+q andmp+q−k respectively. Given this context, equation (4.6) can be reformulated
as follows:

(4.7) ϕ(z) = O
(
(z − z0)

np+q−k−1
)
.

Given that n ≥ k + 2, it is observable that ϕ(z) is holomorphic at z0. Suppose z1 is a
zero of F1 − 1 with multiplicity q1(≥ 2), excluding the zeros of Ψf(z) and Pi(z), i = 1, 2.
Since F1 and G1 share (1, 1), it is evident that z1 is also a zero of G1 − 1 with a multiplicity
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of r1(≥ 2).
In the neighbourhood of z1 the taylor series expansion of functions will be as follows:

F1(z)− 1 = aq1(z − z1)
q1 + aq1+1(z − z1)

q1+1 + · · · , aq1 ̸= 0,

G1(z)− 1 = br1(z − z1)
r1 + br1+1(z − z1)

r1+1 + · · · , br1 ̸= 0,

F1(z)− G1(z) =


aq1(z − z1)

q1 + aq1+1(z − z1)
q1+1 + · · · , if q1 < r1,

−(br1(z − z1)
r1 + br1+1(z − z1)

r1+1 + · · · ) if q1 > r1,

(ar1 − br1)(z − z1)
r1 + (ar1+1 − br1+1)(z − z1)

r1+1 + · · · , if q1 = r1,

=⇒ F ′(z) = q1aq1(z − z1)
q1−1 + (q1 + 1)aq1+1(z − z1)

q1 + · · ·
Let t1 ≥ max{q1, r1} ≥ 2 with this regard (4.6) can be rewritten as

(4.8) ϕ(z) = O
(
(z − z1)

t1−1
)

It is evident that ϕ(z) is holomorphic at z1. The zeros of Pi, where i = 1, 2, and the poles
of f(z) collectively contribute to the poles of ϕ(z). Consequently, ϕ(z) possesses a finite
number of poles, implying that N(r, ϕ) = O (log r), and thus T (r, ϕ) = S(r, f). From (4.8),
we see that

N (2

(
r,

1

F1 − 1

)
≤ N

(
r,

1

ϕ

)
≤ T (r, ϕ) + S(r, f),

=⇒ N (2

(
r,

1

F1 − 1

)
= S(r, f)

Once more, since F1 and G1 share (1, 1) except for the zeros of Pi(z), where i = 1, 2, we
observe that N (2

(
r, 1

G1−1

)
= S(r, f).

Rearranging the terms in (4.6), we get

(4.9)
1

F1
=

F ′
1

ϕF1(F1 − 1)

(
1− G1

F1

)
From (4.5), we get G1

F1
= P1G

P2F . Hence

(4.10) m

(
r,

1

F1

)
= S(r, f) and m

(
r,

1

f

)
= S(r, f).

Case 1.1. Suppose n > k + 3, with reference to (4.7), we see that

(4.11) N

(
r,

1

f

)
≤ N

(
r,

1

ϕ

)
≤ T (r,

1

ϕ
) ≤ T (r, ϕ) + S(r, f)

Combining (4.10) and (4.11), we get

=⇒ T (r, f) =S(r, f)(4.12)

Which is contradiction
Case 1.2. Suppose n = k + 3 with reference to (4.7), we see that

N (2

(
r,

1

f

)
≤ N

(
r,

1

ϕ

)
≤ T (r, ϕ) + S(r, f),

but T (r, f) = N
(
r, 1f

)
+m

(
r, 1f

)
, hence

(4.13) T (r, f) = N1)

(
r,

1

f

)
+ S(r, f)
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It is evident that,

(4.14) N (2

(
r,

1

F − P1

)
= S(r, f) and N (2

(
r,

1

G − P2

)
= S(r, f)

by the definition of F and G.
Since F − P1 and G − P2 share (0, 1), there exists a meromorphic function, denoted Z, of
finite order such that

(4.15)
G − P2

F − P1
= Z or G − P2 = Z (F − P1)

Case 1.2.1. Now let’s examine the scenario where Z is not constant. Assume z2 is a zero of
Z. Given that F −P1 and G −P2 share (0, 1), it’s evident that z2 is a zero of F −P1 with a
multiplicity, let’s say r2, and z2 is a zero of G − P2 with a multiplicity, let’s call it q2, such
that r2 < q2. If r2 > q2, then z2 becomes a pole of Z. Given the finite poles of F and G, it
follows that N(r,F) = S(r, f) and N(r,G) = S(r, f).
Therefore using (4.14) and (4.15), we can write

N

(
r,

1

Z

)
≤ N (2

(
r,

1

G − P2

)
+ S(r, f), N (r,Z) ≤ N (2

(
r,

1

F − P1

)
+ S(r, f).

Differentiating (4.15), we get

(4.16) G′ − P ′
2 = Z′ (F − P1) + Z (F ′ − P ′

1)

In (4.16), replace the term F − P1 and F from (4.15) and then rearranging, we arrive at

G′F − GF ′ − Z′

Z
GF =P1G +

(
P ′
2 −

Z′

Z
P2

)
F −

(
Z′

Z
P1 + P ′

1

)
G − P2F ′

+
Z′

Z
P1P2 − P1P ′

2 + P ′
1P2(4.17)

Let B = Z′

Z , leading to T (r,B) = S(r, f). Since f(z) has a finite number of poles and shares
0 CM with f(z + c). Hence

(4.18) f(z) = f(z + c)ψ(z)eγ(z) (or)
f(z)

f(z + c)
= ψ(z)eγ(z)

where γ(z) and ψ(z) is a polynoamial and rational function respectively.
Differentiating (4.18), we get

(4.19) f ′(z) = f ′(z + c)ψ(z)eγ(z) + f(z + c)ψ′(z)eγ(z) + f(z + c)ψ(z)eγ(z)γ′(z).

Dividing (4.19) by (4.18),

f ′(z)

f(z)
=
f ′(z + c)

f(z + c)
+
ψ′(z)

ψ(z)
+ γ′(z) =

f ′(z + c)

f(z + c)
+N (z)

where N (z) = ψ′(z)
ψ(z) + γ′(z). Using the Lemma 3.1, from (4.19) we get

m

(
r,
f(z + c)

f(z)

)
+m

(
r,

f(z)

f(z + c)

)
= S(r, f) and T (r, ψeγ) = S(r, f).

From (4.4), we have

(4.20) G(z) =
{
a2f

n+2(z + c) + a1f
n+1(z + c) + fn(z + c)

}(k)

For k = 1, we get

G(z) =
{
a2(n+ 2)fn+1(z + c) + a1(n+ 1)fn(z + c) + nfn−1(z + c)

}
f ′(z + c).
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For k = 2, we get

G(z) ={a2[(n+ 2)(n+ 1)fn(z + c)(f ′(z + c))2 + (n+ 2)fn+1(z + c)f ′′(z + c)]

+ a1[(n+ 1)fn(z + c)f ′′(z + c) + n(n+ 1)fn−1(z + c)(f ′′(z + c))2]

+ a0[n(n− 1)fn−2(z + c)(f ′(z + c))2 + nfn−1(z + c)f ′′(z + c)]}.

In general differentiating k− times, we get

G(z) =
∑
λ2

aλ2 (f(z + c))
ϑλ2

0 (f ′(z + c))
ϑλ2

1 · · ·
(
f (k)(z + c)

)ϑλ2

k

+
∑
λ1

aλ1 (f(z + c))
ϑλ1

0 (f ′(z + c))
ϑλ1

1 · · ·
(
f (k)(z + c)

)ϑλ1

k

+
∑
λ0

(f(z + c))
ϑλ0

0 (f ′(z + c))
ϑλ0

1 · · ·
(
f (k)(z + c)

)ϑλ0

k

(4.21)

where ϑλ
i

0 , ϑ
λi

1 , · · ·ϑλ
i

K ∈ Z+ such that
k∑
j=0

ϑλ
i

j = n+ i and n+ i− k ≤ ϑλ
i

0 ≤ n+ i− 1 for

i = 1, 2 and aλ1 , aλ2 are constants.
Differentiating the above equation, we get

G′(z) =
∑
λ2

bλ2 (f(z + c))
dλ

2

0 (f ′(z + c))
dλ

2

1 · · ·
(
f (k+1)(z + c)

)dλ2

k+1

+
∑
λ1

bλ1 (f(z + c))
dλ

1

0 (f ′(z + c))
dλ

1

1 · · ·
(
f (k+1)(z + c)

)dλ1

k+1

+
∑
λ0

(f(z + c))
dλ

0

0 (f ′(z + c))
dλ

0

1 · · ·
(
f (k+1)(z + c)

)dλ0

k+1

(4.22)

where dλ
i

0 , d
λi

1 , · · · dλ
i

K ∈ Z+ such that
k+1∑
j=0

dλ
i

j = n + i and n + i − k ≤ dλ
i

0 ≤ n + i − 1 for

i = 1, 2 and bλ1 , bλ2 are constants.
From (4.4), we have

(4.23) F(z) = fn+2(z)

[
a2 +

a1
f(z)

+
1

f2(z)

]
Differentiating (4.23), we get

(4.24) F ′(z) = fn+2f ′
[
a2(n+ 2)

f(z)
+

(n+ 1)a1
f2(z)

+
n

f3(z)

]
Substituting (4.21)-(4.24) in (4.17), we see that
(4.25)

fn+2(z)

{
(G′ − BG)

[
a2 +

a1
f(z)

+
1

f2(z)

]
− G f

′(z)

f(z)

[
a2(n+ 2) +

(n+ 1)a1
f(z)

+
n

f2(z)

]}
= Q(z)
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where Q(z) is a differential polynomial in f(z) and f(z + c) of degree n.
Let

R1(z) = a2 +
a1
f(z)

+
1

f2(z)
; R2(z) = a2(n+ 2) +

(n+ 1)a1
f(z)

+
n

f2(z)
,

G′(z)R1(z)− BG(z)R1(z)− G(z)f
′(z)

f(z)
R2(z) = P(z)(4.26)

Using (4.26) in (4.25), we get

(4.27) fn+2(z)P(z) = Q(z).

From (4.20), f
′(z)
f(z) can be replaced by f ′(z+c)

f(z+c) + ψ′(z)
ψ(z) + γ′(z). Hence from (4.26),

P(z) =R1(z)
{∑

λ2

bλ2 (f(z + c))
dλ

2

0 (f ′(z + c))
dλ

2

1 · · ·
(
f (k+1)(z + c)

)dλ2

k

+
∑
λ1

bλ1 (f(z + c))
dλ

1

0 (f ′(z + c))
dλ

1

1 · · ·
(
f (k+1)(z + c)

)dλ1

k

+
∑
λ0

(f(z + c))
dλ

0

0 (f ′(z + c))
dλ

0

1 · · ·
(
f (k+1)(z + c)

)dλ0

k
}

− f ′(z + c)R2(z)
{∑

λ2

aλ2 (f(z + c))
ϑλ2

0 −1
(f ′(z + c))

ϑλ2

1 · · ·
(
f (k)(z + c)

)ϑλ2

k

+
∑
λ1

aλ1 (f(z + c))
ϑλ1

0 −1
(f ′(z + c))

ϑλ1

1 · · ·
(
f (k)(z + c)

)ϑλ1

k

+
∑
λ0

(f(z + c))
ϑλ0

0 −1
(f ′(z + c))

ϑλ0

1 · · ·
(
f (k)(z + c)

)ϑλ0

k
}
− G(z)

[
ψ′(z)

ψ(z)
+ γ′(z)

]
R2(z).

The expression G(z)
[
ψ′(z)
ψ(z) + γ′(z)

]
R2(z) in the given equation does not include the high-

est power of f ′(z + c) and can thus be disregarded. In general

(4.28) P(z) = H [f ′(z + c)]
k+1

+ I∗(f)

Here, H represents a suitable constant, and I∗(f) is a polynomial, specifically in the
form

I∗(f) =S(B,B′, ψ, ψ′, γ′)
{∑

λ2

(f(z + c))
uλ2

0 (f ′(z + c))
uλ2

1 · · ·
(
f (k+1)(z + c)

)uλ2

k+1

+
∑
λ1

(f(z + c))
uλ1

0 (f ′(z + c))
uλ1

1 · · ·
(
f (k+1)(z + c)

)uλ1

k+1

+
∑
λ0

(f(z + c))
uλ0

0 (f ′(z + c))
uλ0

1 · · ·
(
f (k+1)(z + c)

)uλ0

k+1
}

Here, uλ
i

0 , u
λi

1 , . . . , u
λi

K+1 ∈ Z+ such that
k+1∑
j=0

uλ
i

j = n+2i and n+2i− k ≤ uλ
i

0 ≤ n+2i− 1

for i = 1, 2. Additionally, S(B,B′, ψ, ψ′, γ′) represents a polynomial in B,B′, ψ, ψ′, γ′ with
constant coefficients.
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With respect to (4.27), we consider two cases:
Case 1.2.1.1. Suppose P(z) ̸≡ 0. Using Lemma 3.1 we see that

(4.29) m(r,P) = S(r, f) and T (r,P′) = S(r, f)

Differentiating (4.28), we get

(4.30) P′(z) = H(k + 1) [f ′(z + c)]
k
f ′′(z + c) + LS(z) [f ′(z + c)]

k+1
+ S1(z)

where L is a suitable constant S(z) = S(B, B′, ψ, ψ′, γ′) and S1(z) is a polynomial of the
form

S1(z) =S(z)
{∑

λ2

(f(z + c))
vλ

2

0 (f ′(z + c))
vλ

2

1 · · ·
(
f (k+1)(z + c)

)vλ2

k+1

+
∑
λ1

(f(z + c))
vλ

1

0 (f ′(z + c))
vλ

1

1 · · ·
(
f (k+1)(z + c)

)vλ1

k+1

+
∑
λ0

(f(z + c))
vλ

0

0 (f ′(z + c))
vλ

0

1 · · ·
(
f (k+1)(z + c)

)vλ0

k+1
}

where vλ
i

0 , v
λi

1 , . . . , v
λi

K+1 ∈ Z+ such that
k+1∑
j=0

vλ
i

j = n+2i and n+2i−k ≤ vλ
i

0 ≤ n+2i− 1

for i = 1, 2. Asume z3 to be a simple zero of f(z + c) except for the zeros of G and G′. So
(4.28) and (4.30) can be written as

(4.31) P(z3) = H [f ′(z3 + c)]
k+1

(4.32) P′(z3) = H(k + 1) [f ′(z3 + c)]
k
f ′′(z3 + c) + LS(z3) [f

′(z3 + c)]
k+1

Uing (4.31) in (4.32) and then rearranging, we get

(4.33) P(z3)f
′′(z3 + c)− P′(z3)f

′(z3)

k + 1
+
LS(z3)f

′(z3 + c)

H(k + 1)
= 0

Let K1 = 1
k+1 and K2 = LS(z3)

H(k+1) . So (4.33) becomes

P(z3)f
′′(z3 + c)−K1P

′(z3)f
′(z3 + c) +K2f

′(z3 + c) = 0.

Clearly z3 is a zero of P(z)f ′′(z3+ c)−K1P
′(z3)f

′(z3+ c)+K2f
′(z3+ c) and consequently

T (r,K1) = S(r, f) and T (r,K2) = S(r, f).
Let us define

(4.34) Φ1(z) =
P(z)f ′′(z + c)−K1P

′(z)f ′(z + c) +K2f
′(z + c)

f(z + c)

Let

(4.35) V1(z) =
Φ1(z)

P(z)
and V2(z) =

K1(z)P
′(z)

P(z)
−K2(z)

Using (4.35), (4.34) can be written as

(4.36) f ′′(z + c) = V1(z)f(z + c) + V2(z)f
′(z + c).

Clearly T (r,V1) = S(r, f) and T (r,V2) = S(r, f).
Suppose if Φ1(z) ≡ 0 then V1(z) = 0, the detailed analysis of this case is on the same line
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of the equation (3.24) in [9].
Let us suppose if Φ1(z) ̸≡ 0, then from (4.35) we have

(4.37) P′(z) =

[
V2(z)

K1(z)
+

K2(z)

K1(z)

]
P(z).

Substituting (4.28) in (4.37), we get

(4.38) P′(z) =

[
V2(z)

K1(z)
+

K2(z)

K1(z)

]
H [f ′(z + c)]

k+1
+

[
V2(z)

K1(z)
+

K2(z)

K1(z)

]
I∗(f).

Substituting (4.36) in (4.30), we get

P′(z) = H(k + 1)V1(z) [f
′(z + c)]

k
f(z + c)+ [H(k + 1)V2(z) + LS(z)] [f ′(z + c)]

k+1

+ S1(z)(4.39)

Comparing equation (4.38) and (4.39) we see that[
H

(
V2(z)

K1(z)
+

K2(z)

K1(z)

)
−H(k + 1)V2(z)− LS(z)

]
[f ′(z + c)]

k+1

−H(k + 1)V1(z) [f
′(z + c)]

k
f(z + c) +

[
V2(z)

K1(z)
+

K2(z)

K1(z)

]
I∗(f)− S1(z) ≡ 0.

Since V1(z) ̸≡ 0, from (4.39) we have

(4.40) N1)

(
r,

1

f

)
= S(r, f).

Using equations (4.13) and (4.40), we see that T (r, f) = S(r, f), Which is a contradiction.
Case 1.2.1.2. Suppose P(z) ≡ 0. From (4.27), we see that Q(z) ≡ 0 hence (4.17) becomes

(4.41) G′F − GF ′ − Z′

Z
GF ≡ 0 or

G′

G
=

Z′

Z
+

F ′

F
Upon integration of the above equation, we obtain G = lZF where l is a nonzero constant.
Given that n = k + 3 and N (r,Z) = S(r, f), from (4.15) it follows that N

(
r, 1f

)
= S(r, f).

Consequently, from (4.15), T (r, f) = S(r, f), which leads to a contradiction.
Case 1.2.2. Let us consider the case when Z is a constant say A such that A ≠ 0. From
(4.15), we can write

(4.42) G − P2 = A(F − P1) (or) G −AF = P2 −AP1

We have n = k + 3, it follows that N
(
r, 1f

)
= S(r, f) and consequently from (4.13),

T (r, f) + S(r, f). Which leads to contradiction.
Case 2. Suppose ϕ ≡ 0. From (4.6), we get F1 ≡ G1 i.e.,

(4.43)
[
fn(z + c)Ψf(z+c)

](k) ≡ P2

P2

(
fn(z)Ψf(z)

)
Furthermore if P1 ≡ P2, then

(4.44)
[
fn(z + c)Ψf(z+c)

](k) ≡ (
fn(z)Ψf(z)

)
Let’s assume z4 to be the zero of f(z) with multiplicity say r∗. As f(z) and f(z + c) share
0 CM. z4 will be a zero of f(z + c) with multiplicity t∗, z4 is a zero of

(
fn(z)Ψf(z)

)
with

multiplicity (n+2)r∗ and z4 is a zero of
[
fn(z + c)Ψf(z+c)

](k) with multiplicity (n+2)r∗−k.
This will be a contradiction in the backdrop of (4.44). As a result we have f(z) ̸= 0, f(z +
c) ̸= 0. Let

(4.45) G1(z) = fn(z + c)Ψf(z+c)
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Clearly from (4.45), (G1(z))
(k) ̸= 0 [as f(z) ̸= 0 and f(z + c) ̸= 0]. Since f(z) is a transcen-

dental meromorphic function with finitely many poles and f(z) ̸= 0, f(z) must take the
form

(4.46) f(z) =
1

L1(z)
eL2(z)

where L1(z) is a non-zero polynomial and L2(z) is a non constant polynomial. Therefore

(4.47) G1(z) =
aie

L4(z)

L3(z)
, where L3(z) = Ln+i1 (z + c), L4 = (n+ i)L2(z + c)

Define

(4.48) ς(z) =
G′
1(z)

G1(z)
= L′

4(z)−
L′
3(z)

L3(z)
.

Using (4.49) in Lemma 3.2, we get

(4.49)
G(k)
1 (z)

G1(z)
= ςk(z) +Qk−1(ς)

where Qk−1(z)(ς) is a polynomial of degree k − 1 in ς and its derivative.
If L′

4 is not a constant, we see that

G(k)
1 (z)

G1(z)
∼ ςk ∼ (L′

4(z))
k → ∞ as z → ∞,

we know that every non-constant rational function assumes every value in the closed
complex plane. Consequently (G1(z))

(k)
= 0 somewhere in the open complex plane.

Therefore we arrive at a contradiction.
Next we suppose that L′

4 is a constant. Let L′
4 = ϱ ̸= 0. If ς(z) is non-constant, then

we see that ς(z) = ϱ, ς ′ = ς ′′ = · · · = 0 at ∞. Also by Lemma 3.2, we observe that
G(k)
1 (z)
G1(z)

= ϱk, z → ∞. Again G(k)
1 (z)
G1(z)

must have a zero in the open complex plane. Conse-
quently ς is aconstant. Therefore L4(z) = ϱ(z) = ς(z). From (4.49) we get

(4.50) G1(z) = eϱz+d,

where d is a constant and consequntly from (4.45) we get f(z) = Ce(
ϱz
n+i ) where C (̸= 0) =

c∗
ai
, i = 0, 1, 2 and a0 = 1 is a constant such that eϱC = 1, c∗ is an integration constant and

ϱk = 1.

5. CONCLUSION

This theorem contributes to the ongoing research on meromorphic functions by es-
tablishing a significant uniqueness theorem concerning shift polynomials and derivative-
sharing polynomials. The provided illustrative examples highlight the importance and
relevance of the conditions imposed in this context, further supporting the extension of
existing literature.
Open questions:

(1) What modifications occur to Theorem 2.1 when examined through the lens of
weakly weighted sharing and truncated sharing, which are less restrictive con-
cepts than weighted sharing?

(2) How do the result change when Ψf(z) is considered to be a non-zero polynomial
of higher degree?
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Applications The result obtained can be used in numerical methods for approximating
solutions to complex equations involving meromorphic functions.
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