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Diffeomorphic embedding of Higher-dimensional Hilbert
Manifolds into Hilbert spaces

MADHAN VELAYUTHAN1 AND JEYANTHI VENKATAPATHY2

ABSTRACT. This manuscript investigates the relationship between higher-dimensional Hilbert Manifolds
and Hilbert spaces using the diffeomorphic embedding theorem. The existence of diffeomorphisms between
Hilbert spaces will be demonstrated, and we will provide exact constructions that demonstrate their mathe-
matical flexibility in several scenarios. The more general case of compact complex Manifolds equipped with
Hermitian metrics is investigated. Under specific conditions, the existence of diffeomorphic embeddings into
a separable infinite-dimensional Hilbert space that preserve both the complex structure and the Hermitian ge-
ometry is demonstrated. These results pave the way for studying complex geometry within the framework of
infinite-dimensional Hilbert spaces.

1. INTRODUCTION

A Hilbert space is a linear space with an inner product that supports length and angle
concepts, and it is complete in the sense that any convergent sequence has a limit within
the space. A Hilbert Manifold is a smooth Manifold containing a Hilbert space. It is a
smooth Manifold with each tangent space being a Hilbert space and smooth charts from
Hilbert spaces providing local coordinates. Let M be a closed Riemannian Manifold. The
tangent bundle TM may then be assigned a Riemannian metric, converting each tangent
space into a Hilbert space. As a result,TM becomes a Hilbert Manifold. A diffeomor-
phic embedding is a smooth bijection between two smooth Manifolds in which both the
mapping and its inverse are smooth. It effectively embeds one Manifold in another while
preserving smoothness and bijectivity.

The Nash (1956) [6] laid the framework for embedding findings in Riemannian geome-
try. Yamashita (2017) [10] expands the subject to non-separable Hilbert Manifolds, increas-
ing its breadth. Blair (2022) [13] examines self-replicating 3-Manifolds, which may spur
additional study into embeddings of certain dimensions. Fania and Lanteri (2023) [16]
investigate Hilbert curves of scrolls, providing insights into embeddings of certain types
of Manifolds. Geoghegan (1976) [3] proposes the notion of Hilbert cube Manifolds, which
might be used to generate certain Hilbert Manifold embeddings. Donaldson (1986) [2],
Gompf (1984) [4], and Gromov (1985) [5] provide ideas that might be applied to higher-
dimensional embeddings. Tan’s (2018) [8] Gauduchon metric analyses show potential
for investigating the geometry of embedded Manifolds. Vrzin (2018) [9] studied diffeo-
morphisms in Euclidean space R3 . Recent research by Branding and Siffert (2023) [14]
on the stability of harmonic self-maps and Nobili and Violo (2024) [19] on the stability
of Sobolev inequalities provide useful insights that may be relevant to the setting of dif-
feomorphisms and functional analysis on embedded Manifold. Antonyan et al. (2016)
[11] investigated Hilbert Manifold orbit spaces.Chaperon and López De Medrano (2008)
[15] study the attraction of compact invariant subManifolds, which might be related to
embeddings. While not related, Kwasik and Blaga (2010) [1] concentrate on canonical
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connections on k-symplectic Manifolds. Badji et al. (2020) [12] investigate L3-affine sur-
faces, which may help to comprehend particular forms of embedded subManifolds. Pa-
han (2020) [7] investigates subManifolds within a larger geometric context. Ghosh and
Samanta (2024) [17] analyze fusion frames in Hilbert tensor products, which might be
relevant for investigating function spaces on embedded Manifolds. Schultz (2002) [18]
discusses diffeomorphic squares of lens spaces, whereas Wang et al. (2019) [20] discuss
Riemannian Manifold equilibrium issues.

Using diffeomorphic embedding, this paper will look at the link between higher -
dimensional Hilbert Manifolds and Hilbert spaces. It will show that diffeomorphisms
between Hilbert spaces exist and present accurate constructions that demonstrate their
mathematical flexibility in a variety of contexts. The more general example of compact
complex Manifolds endowed with Hermitian metrics will be studied. It will show that
there are diffeomorphic embeddings into a separable infinite-dimensional Hilbert space
that maintain both the complex structure and the Hermitian geometry under certain cir-
cumstances.

2. PRELIMINARIES

This section establishes the foundation with fundamental definitions, examples, and
remarks for better understanding as well as context.

Definition 2.1 ([21]). A Hilbert space is separable if it has a countable orthonormal basis.
An orthonormal basis is a set of vectors where each vector has unit norm (length) and all
vectors are orthogonal (zero inner product). A countable basis implies the space can be
”listed” using a countably infinite number of elements.

Example 2.1. This space, denoted by L2(Ω), consists of all complex-valued measurable
functions defined on a set Ω (usually a measurable subset of Rn) such that the integral of
their absolute value squared is finite:∫

Ω

|f(x)|2dx <∞

This integral defines the norm (length) of a function in L2. L2 has a natural inner product
defined as:

(f, g) =

∫
Ω

f(x) · g(x) dx

where g(x) denotes the complex conjugate of g(x). L2 is separable because it has a count-
able orthonormal basis.

Definition 2.2 ([23]). A Manifold, intuitively, is a space that locally resembles Euclidean
space. It’s a smooth, continuous surface that can be embedded in a higher-dimensional
Euclidean space. The n-dimensional sphere denoted by Sn is a common example. It rep-
resents all points at a unit distance from the origin in (n+1)-dimensional Euclidean space.
Locally, it behaves like n-dimensional Euclidean space

Definition 2.3 ([25]). A Hilbert Manifold is a Manifold whose tangent space at each point
is a Hilbert space. The tangent space captures the notion of ”direction” at a point on the
Manifold. Since Hilbert spaces allow for infinite dimensions, Hilbert Manifolds can model
more complex geometric structures.

Consider the space of all smooth closed loops in a finite-dimensional Manifold M. This
loop space can be equipped with a specific inner product based on integration along the
loops. It becomes a Hilbert Manifold where the tangent space at each point represents
infinitesimal variations of the loop.
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Example 2.2. An important example of a Hilbert Manifold is the space of smooth func-
tions on a smooth Manifold M with compact support, denoted by C∞

c (M). These func-
tions are zero outside a compact subset of M . This consists of all smooth functions
f : M → R with compact support. The topology is inherited from the space of all smooth
functions on M , denoted by C∞(M). However, there’s an additional constraint. Conver-
gence in C∞

c (M) requires not only the function values to converge but also all its deriva-
tives. This makes C∞

c (M) a Fréchet space, a special type of topological vector space. A
smooth structure is defined using charts. We consider a finite collection of smooth, com-
pactly supported functions that act like a ”unity partition” over a cover of M (meaning
these functions together cover the entire Manifold and don’t overlap significantly). These
charts allow us to define smooth maps between C∞

c (M) and Euclidean spaces, establish-
ing the Manifold structure.

Definition 2.4 ([25]). A compact complex Manifold is a complex Manifold (where coordi-
nates and functions are complex-valued) that is also compact (closed and bounded). Ex-
amples include complex projective spaces, which are quotients of complex vector spaces
by a specific equivalence relation. A compact Kahler Manifold is a specific type of com-
pact complex Manifold equipped with a Hermitian metric.

Remark 2.1. A Hermitian metric is a generalization of the Riemannian metric (used on
regular Manifolds) to complex Manifolds. It allows for defining concepts like length,
distance, and angles in the complex setting. An example is the complex torus, which can
be thought of as a product of circles with a specific complex structure.

Definition 2.5 ([22]). A differentiable Manifold, denoted by M, is a topological space
equipped with a specific structure that captures local smoothness. It satisfies two key
conditions: Local Euclidean Similarity: Every point in M possesses a neighborhood that
is diffeomorphic to an open set in n-dimensional Euclidean space Rn.

Example 2.3. A torus, resembling a donut shape, is another example. It can be visualized
as a square with opposite sides identified. Locally, every point on the torus resembles a
small flat square. We can use multiple charts to cover the torus, and the transition between
charts (change of coordinates) involves smooth functions.

Definition 2.6 ([24]). Let M and N be differentiable Manifolds of the same dimension. A
diffeomorphism Φ : M → N is a smooth bijective map satisfying the following properties:
Smoothness: Φ and its inverse Φ−1 are continuously differentiable. This implies infinite
differentiability with continuous derivatives of all orders.
Invertibility: Φ is a one-to-one and onto map. Every point in N has a unique pre-image
under Φ in M , and vice versa through Φ−1.
Local Smoothness Preservation: The diffeomorphism Φ preserves the inherent smooth
structure of the Manifolds.

Remark 2.2. This diffeomorphism acts as a ”local chart,” providing a smooth coordinate
system that describes the geometric structure around that specific point. These local charts
(diffeomorphisms) must be compatible with each other. When two charts overlap (share
a common region), the transition map between them, obtained by composing the charts,
must be a smooth function (continuously differentiable). This ensures a consistent repre-
sentation of the Manifold despite using different local coordinate systems.

Example 2.4. The stereographic projection from the north pole of a unit sphere S2 onto the
complex plane punctured at the origin (C \ {0}) is a diffeomorphism. It demonstrates dif-
feomorphism between two seemingly different Manifolds while preserving local smooth-
ness.
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Remark 2.3. Diffeomorphisms are used to classify Manifolds up to diffeomorphism, a
key concept in understanding the topological properties of Manifolds. Diffeomorphisms
are used to study how geometric structures like metrics and connections can be trans-
ferred between Manifolds. Diffeomorphisms that preserve a specific geometric structure
(symplectic form) are crucial in studying Hamiltonian mechanics and phase space

3. DIFFEOMORPHIC EMBEDDING - FINITE AND INFINITE DIMENSIONAL SPACE

Let H be a finite-dimensional Hilbert space. Here, every finite dimensional Hilbert
Manifold can be embedded diffeomorphically into a finite-dimensional Hilbert space is
illustrated by mean of example.

Theorem 3.1. Let H be a finite-dimensional Hilbert space. Then there exists a diffeomorphism
Φ : U → H , where U is the unit ball of H.

Proof. Define a smooth mapping h : U → H by h(x) = x
1 + ||x||2 . This map continuously

maps the unit ball U to a bounded subset of H and is smooth everywhere except the
origin. This can be achieved by constructing a smooth diffeomorphism Φ : U ′ → H′

from
a smaller unit ball U ′ around the origin to a smaller ball H′ around the origin in H.

The polar coordinate map Φ(r, θ) = (r cos θ, r sin θ), where r and θ are polar co-
ordinates in U ′. Define the desired diffeomorphism h : U → H as the composition
Φ = h◦Φ−1. This is because both h and Φ−1 are diffeomorphisms, and their composition
is again a diffeomorphism. □

Theorem 3.2. Every finite-dimensional Hilbert Manifold can be embedded diffeomorphically into
a finite-dimensional Hilbert space.

Proof. Let M be a finite-dimensional Hilbert Manifold. By definition, M is a smooth Man-
ifold equipped with a Hilbert space structure. Since M is finite-dimensional, it can be
embedded into a Euclidean space Rn for some finite n. Now, consider the Hilbert space
H = L2(M), the space of square-integrable functions on M equipped with the inner
product induced by the Hilbert Manifold structure. This space is separable, as the Mani-
fold is finite-dimensional.

Define the map Φ : M → H by assigning each point p ∈ M to the Dirac delta function
δp centered at p. This map is well-defined because each Dirac delta function is a square-
integrable function on M, and H is the space of such functions. If Φ (p1) = Φ (p2) for
some p1, p2 ∈ M , then the corresponding Dirac delta functions must be equal. This
implies that p1 = p2, ensuring injectivity. The smoothness of Φ follows from the smooth
structure of M and the fact that the Dirac delta functions are distributions. The inverse
Φ−1 : Φ(M) → M is given by evaluating a function in H at a point in M. This is well-
defined and smooth. □

The theorem proves that a finite-dimensional Hilbert Manifold can be diffeomorphi-
cally embedded in a finite-dimensional Hilbert space. However, it is crucial to remember
that this embedding may not fully maintain the Manifold’s local geometry. The embed-
ding makes use of the space of square-integrable functions on the Manifold (L2(M)) to
capture global information about it. Dirac delta functions can represent points on a Man-
ifold within L2(M), but their features may not preserve the Manifold’s local structure. In
layman’s words, the theorem assures the existence of a smooth bijective map between the
Manifold and the Hilbert space, but it does not guarantee that adjacent points on the Man-
ifold are transferred to nearby points in the Hilbert space. This is the difference between
local and global diffeomorphisms.
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Corollary 3.1. Every finite-dimensional Hilbert Manifold M can be embedded diffeomorphically
into an open subset of finite-dimensional Hilbert space.

Proof. Define the map Φ : M → H by assigning each point p ∈ M to the vector field
in the basis that corresponds to the tangent vector Xp at p. Now, choose a basis {Xi} for
the tangent space at each point p ∈ M . This choice can be done smoothly, respecting the
smooth structure of M. Consider the space H = L2(M, TM), which consists of square-
integrable vector fields on M equipped with the inner product induced by the Hilbert
Manifold structure on TM. This space is separable as M is finite-dimensional. □

A compact complex Manifold with a Hermitian metric may be diffeomorphically em-
bedded into an infinite-dimensional Hilbert space while retaining its complex structure
and Hermitian geometry. This enables the study of complicated Manifolds using power-
ful tools from infinite-dimensional analysis and approaches.

Theorem 3.3. Let M be a compact complex Manifold equipped with a Hermitian metric, and
let H be a separable infinite-dimensional Hilbert space. Given the Hermitian metric, there exists
a diffeomorphic embedding Φ : M → H that preserves the complex structure and Hermitian
geometry.

Proof. The first step is to choose a basis for the Hilbert space H. This basis can be chosen
in a way that respects the complex structure of M. Define a map Φ : M → H is defined
by sending each point p ∈ M to the vector in the basis that corresponds to the complex
coordinates of p.

Let M be a cover with finitely many coordinate charts (Ui, Φi) featuring holomorphic
transition maps. For each chart, construct a local embedding ψi : Ui → H using holo-
morphic functions and leveraging the inner product structure of H. A smooth partition of
unity ρi subordinate to the cover Ui.

Define the global embedding Φ : M → H by Φ(p) =
∑

i ρi(p)ψi(p) for p ∈ M . This
map Φ is a diffeomorphism, because it is injective and its inverse is also a diffeomorphism.
It also preserves the complex structure of M, because the complex coordinates of a point
are preserved by the map Φ. □

Remark 3.4. The complex structure and Hermitian metric of a complex manifold are
specified locally. An embedding Φ : M → H may be able to maintain these structures
point-wise for each element in M . However, ensuring global uniformity over the whole
non-compact manifold is difficult. Consider a complex manifold M with a basic struc-
ture, such as a cylinder extending indefinitely in one direction. While you may be able to
”map” points on the cylinder to points in H , sustaining the lengths and angles indicated
by the Hermitian metric (isometric embedding) or the complex structure (holomorphic
embedding) across an infinite length becomes difficult. As a result, demonstrating the
existence of such an embedding on non-compact complex manifolds is often impossible.

Theorem 3.4. Let M be a compact complex Manifold equipped with a Hermitian metric, and let
H be a separable infinite-dimensional Hilbert space. Under the assumption that the Hermitian
metric on M is compatible with its complex structure, there exists a diffeomorphic embedding
Φ : M → H that preserves both the complex structure and the Hermitian geometry.

Proof. Let M be compact, it admits a finite cover by coordinate charts (Ui, Φi), where Ui

are open subsets of M and Φi : Ui → Cn are holomorphic homeomorphisms onto open
subsets of Cn. The transition maps Φi ◦ Φ−1

j : Φj(Ui ∩ Uj) → Φi(Ui ∩ Uj) are
holomorphic. For each chart (Ui, Φi), define a local embedding ψi : Ui → H as follows:
Choose an orthonormal basis {ek} for H. For any point p ∈ Ui, consider its coordinates
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(z1, ..., zn) under Φi. Define ψi(p) =
∑

k

√
γk(p)zkek , where γk(p) are the components

of the Hermitian metric on M expressed in the coordinates (z1, ..., zn). The compatibility
of the Hermitian metric with the complex structure guarantees that ψi is a holomorphic
embedding. Since M is compact, there exists a smooth partition of unity {ρi} subordinate
to the cover {Ui}, satisfying: ρi ≥ 0 for all i. The

∑
i ρi = 1 on M. The support of each ρi

is contained in a single Ui.
Define the global embedding Φ : M → H by Φ(p) =

∑
i ρi(p)ψi(p) for any p in M. Φ

is smooth because it’s a finite sum of smooth functions (ρi and ψi). Φ is injective because
the local embeddings ψi are injective, and the partition of unity ensures that they are
”glued together” smoothly. Φ is an immersion because its differential is injective at every
point, which can be shown using the injectivity of the local embeddings and the partition
of unity. Φ has an open image because the local embeddings have open images, and the
partition of unity ensures that they are ”glued together” in a way that preserves openness.

Φ preserves the complex structure of M because it’s defined using holomorphic local
embeddings and a smooth partition of unity. Φ respects the Hermitian geometry of M
because it’s constructed using the components of the Hermitian metric in local coordi-
nates. □

Remark 3.5. The diffeomorphic embedding of compact complex Manifolds into Hilbert
space presents a fascinating and fruitful direction for research in complex geometry and
its interplay with infinite-dimensional analysis. Exploring this connection holds great
promise for advancing the understanding of both fields.

4. DIFFEOMORPHIC EMBEDDING - PROBLEMS

This section covers diffeomorphic embeddings in finite and infinite dimensions, as well
as associated problems and solutions. It looks into the challenges of embedding mappings
that preserve differential structure over several dimensions. It provides a comprehensive
understanding of the challenges and techniques involved in these embeddings by exam-
ining both finite- and infinite-dimensional scenarios.

Problem 4.1. Consider the finite-dimensional Hilbert space H = R2 (the Euclidean plane). Con-
struct a diffeomorphism Φ: U → H, where U is the unit ball in R2 , using the approach outlined
in Theorem 3.1., Explicitly express the mapping d(x) for any point x in U.

Define the smooth mapping h: h(x) = x
1 + ||x||2 = x1, x2

1 + x2
1+ x2

2
for any x = (x1, x2) in U.

Construct the diffeomorphism Φ: Let U ′ =
{
x ∈ R2 : ||x|| < 1

2

}
be a smaller unit ball

around the origin.
Define Φ : U ′ → H′

, where H′ =
{
x ∈ R2 : ||x|| < 1

4

}
, as the polar coordinate map:

Φ(r, θ) = (r cos θ, r sin θ) for any (r, θ) in U ′.
Compose the diffeomorphism Φ= h ◦ Φ−1 : U → H. Explicit expression for Φ(x): If

||x|| < 1
2 , then Φ(x) = h

(
Φ−1(x)

)
= h(x) = x

1 + ||x||2 .

If 1
2 ≤ ||x|| < 1, then d(x) = h

(
Φ−1( x

||x|| )
2

)
= h

(
x

2||x||

)
= x

2||x||+ ||x||2 .

Therefore, Φ: U → H is a diffeomorphism, and its explicit expression is given by the
above cases.

Problem 4.2. Consider the finite-dimensional Hilbert ManifoldM = S1 (the unit circle in R2 ).
Construct a diffeomorphic embedding of S1 into a finite-dimensional Hilbert space, demonstrating
the concept of Theorem 3.2. Embed S1 into Euclidean space: S1 can be embedded into R2 as the
set of points (x, y) satisfying x2 + y2 = 1.
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Define the Hilbert space H = L2
(
S1

)
is the space of square-integrable functions on

S1, equipped with the inner product ⟨f, g⟩ =
∫
S1 f(x)g(x) dx. Construct the embedding

map Φ : S1 → H by Φ(p) = δp , where δp is the Dirac delta function centred at p. If
Φ(p) = Φ(q) for some p, q ∈ S1 , then δp = δq , which implies p = q. Hence, Φ is injective.

The smoothness of Φ follows from the smooth structure of S1 and the properties of
Dirac delta functions as distributions. Construct the inverse map Φ−1 : H → S1 is given
by Φ−1(f) = p, where p is the unique point in S1 such that f(p) ̸= 0. The smoothness of
Φ−1 follows from the smoothness of f and the fact that S1 is a smooth Manifold. Therefore,
Φ : S1 → H is a diffeomorphic embedding.

Problem 4.3. The 2-dimensional sphere S2 , a Hilbert Manifold with its standard Riemannian
metric. Construct an embedding map: Define the map Φ : S2 → R3 as follows: For any point
p = (x, y, z) on S2 (where x2 + y2 + z2 = 1), let Φ(p) = p itself. In other words, Φ simply
maps each point on the sphere to itself in R3 .

The map Φ is smooth because the identity map on a smooth Manifold is always smooth.
Φ is injective because distinct points on S2are also distinct in R3 . Φ is an immersion
because its differential dΦp is injective for every p in S2. This can be shown using the
fact that the tangent space of S2 at any point is a 2-dimensional subspace of R3 , and Φ
is just the inclusion of this subspace into R3 . The image Φ (S2) is open in R3 . To see
this, consider a point p in Φ (S2). Since S2is compact, there exists an open ball B around p
with radius r such that B ∩ S2= {p}. This open ball is entirely contained in Φ (S2), hence
Φ (S2) is open. Since Φ is smooth, injective, an immersion, and has an open image, it’s a
diffeomorphism between S2and Φ (S2).

Problem 4.4. Let D be the unit disk in the complex plane C, equipped with the standard Hermit-
ian metric and complex structure. There is a diffeomorphic embedding Φ : D → H that preserves
both these structures, whereH is an infinite-dimensional Hilbert space L2(∂D). The Hilbert space
L2(∂D) is the space of square-integrable functions on the circle ∂D = {z : |z| = 1} with the
inner product induced by the standard Lebesgue measure on ∂D. D is a biholomorphic copy of the
upper half-plane H+ = {z : Im(z) > 0} via the Cayley transform: c(z) = z−i

z+i .

Define ψ : H+ → L2(∂D) by ψ(z) = (f(z), 0, 0, ...), where f(z) is the analytic contin-
uation of the function 1

z−i to H+. This function extends continuously to ∂D, making it
square-integrable and thus an element of L2(∂D). Use the Riemann mapping theorem
to find a biholomorphic function w : D → H+ with w(0) = 0 and w(1) = 1. Introduce
ρ(z) = |w(z)|2. This function is smooth on D, positive on (0, 1), and vanishes on the
boundary ∂D, hence it qualifies as a smooth partition of unity. Define Φ : D → L2(∂D)
by Φ(z) = ρ(z)ψ(w(z)).

Smoothness: Follows from the local smoothness of ψ and ρ and the chain rule. Since w
and c are bijections, and ψ is injective within H+. Differential of Φ is injective due to the
injectivity of the local and global coordinate maps. Local images are open, and partition
of unity ensures the gluing preserves openness. The Φ is defined using biholomorphic
maps and respects the complex structure of D via pullback. The inner product in L2(∂D)
is induced by the Lebesgue measure, which reflects the geometric area element onD. This
is further supported by the conformal properties of the chosen maps.

Open Question: How can we use these findings to investigate non-compact complex
Manifolds?
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5. CONCLUSIONS

This manuscript shows that finite-dimensional Hilbert Manifolds and open subsets
of finite- dimensional Hilbert spaces are diffeomorphic. Furthermore, it illustrated that
compact complex Manifolds with Hermitian metrics may be embedded into infinite -
dimensional Hilbert spaces while retaining important geometric structure. These findings
pave the door for more research in functional analysis using infinite-dimensional Hilbert
spaces. The existence of diffeomorphisms in Hilbert spaces and presented exact formula-
tions demonstrating their mathematical adaptability in diverse contexts is established. As
a result, the findings not only improve the understanding of geometric structures, but also
open up new paths of inquiry in complex geometry, functional analysis, and differential
topology.
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