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Approximating fixed points of the SP*-iteration for
generalized nonexpansive mappings in CAT (0) spaces

SEYIT TEMIR

ABSTRACT. In this paper, In this paper we prove the strong and ∆−convergence theorems of the SP*-
iteration process for C-α nonexpansive mappings in CAT (0) spaces. Moreover we study the data dependence
result of the proposed iteration process for contraction mappings in CAT (0) spaces. Also we provide an exam-
ple that satisfies condition C-α. Further we apply to the approximate the solution of the integral equation. Our
results improve and extend some recently results in the literature of fixed point theory in CAT (0) spaces.

1. INTRODUCTION AND PRELIMINARIES

A metric space X is aCAT (0) space if it is geodesically connected and if every geodesic
triangle in X is at least as ’thin’ as its comparison triangle in the Euclidean plane. It is well-
known that any complete, simply connected Riemannian manifold having non-positive
sectional curvature is a CAT (0) space. Other examples include Pre-Hilbert spaces, any
convex subset of a Euclidian space Rn with the induced metric, the complex Hilbert ball
with a hyperbolic metric and many others. For discussion of these spaces and of the
fundamental role they play in geometry see Bridson and Haefliger [5]. Burago et al. [6]
contains a somewhat more elementary treatment, and Gromov [13] a deeper study. Fixed
point theory in CAT (0) space has been first studied by Kirk (see [15],[16]). He showed
that every nonexpansive (single-valued) mapping defined on a bounded closed convex
subset of a complete CAT (0) space always has a fixed point. On the other hand, we know
that every Banach space is a CAT (0) space. Since then the fixed point theory in CAT(0)
has been rapidly developed and much papers a appeared.(see [8], [9], [12],[15]-[18]).

Recently, Kirk and Panyanak [18] used the concept of ∆−convergence introduced by
Lim [19] to prove on the CAT (0) space analogs of some Banach space results which in-
volve weak convergence. Further, Dhompongsa and Panyanak [8] obtained ∆−convergence
theorems for the Picard, Mann and Ishikawa iteration processes for nonexpansive map-
pings in the CAT (0) space. If x, y1, y2 are points of a CAT (0) spaces, and and if y0 is the
midpoint of the segment [y1, y2] then the CAT (0) inequality implies

d2(x, y0) ≤
1

2
d2(x, y1) +

1

2
d2(x, y2)−

1

4
d2(y1, y2).

This is the (CN) inequality of Bruhat and Tits [4]. In fact, a geodesic space is a CAT (0)
space if and only if it satisfies the (CN) inequality ([[5], p. 163]).

In the sequel, we need the following definitions and useful lemmas to prove our main
results of this paper.

Lemma 1.1. ([5], Proposition 2.2) Let X be a CAT (0) space, x, y, u, v ∈ X and t ∈ [0, 1]. Then

d(tx⊕ (1− t)y, tu⊕ (1− t)v) ≤ td(x, u) + (1− t)d(y, v)
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Lemma 1.2. [8] Let X be a CAT (0) space.
(i) For x, y ∈ X and t ∈ [0, 1], there exists a unique point z ∈ [x, y] such that d(x, z) = td(x, y)

and d(y, z) = (1−t)d(x, y) (A). We use the notation (1−t)x⊕ty for the unique point z satisfying
(A).

(ii) For x, y ∈ X and t ∈ [0, 1], we have d((1− t)x⊕ ty, z) ≤ (1− t)d(x, z) + td(y, z).

Lemma 1.3. [8] Let X be a CAT (0) space. Then,

d2((1− t)x⊕ ty, z) ≤ (1− t)d2(x, z) + td2(y, z)− t(1− t)d2(x, y)

for all x, y, z ∈ X and t ∈ [0, 1].

Proposition 1.1. [26] A geodesic space X is CAT (0) if and only if for any x, y, u, v ∈ X we have

(1.1) d2(x, u) + d2(y, v) ≤ d2(x, y) + d2(y, u) + d2(u, v) + d2(v, x).

First we present some basic concepts and definitions.
Let X be CAT (0) space and K a nonempty subset of X . Let F : K → K be a mapping.

A point x ∈ K is called a fixed point of F if Fx = x and we denote by Fix(F) the set of
fixed points of F , that is, Fix(F) = {x ∈ K : Fx = x}.

Definition 1.1. Let {xn} be a bounded sequence in a closed convex subset K of a CAT (0) space
X . For x ∈ X , set r(x, {xn}) = lim sup

n→∞
d(x, xn). The asymptotic radius r({xn}) of {xn} is

given by r(K, {xn}) = inf
n

{r(x, {xn}) : x ∈ K} and the asymptotic center of xn relative to K is
the set A(K, {xn}) = {x ∈ K : r(x, {xn}) = r(K, {xn})}. It is known that, in a CAT (0) space,
A(K, {xn}) consists of exactly one point; please, see [11], Proposition 7.

We now recall the definition of ∆-convergence and weak convergence in CAT (0) space.

Definition 1.2. ([18],[19]) A sequence {xn} in a CAT (0) space X is said to ∆−converge to
x ∈ X if X is the unique asymptotic center of un for every subsequence {un} of {xn}. In this case
we write ∆− lim

n→∞
xn = x and call X is the ∆−limit of {xn}.

A mapping F : K → K is called contraction if there exists θ ∈ [0, 1) such that

d(Fx,Fy) ≤ θd(x, y),

for all x, y ∈ K. If θ = 1 in inequality above, then F is said to be a nonexpansive mapping.

In 2008, Kirk and Panyanak [18] gave the following result for nonexpansive mappings
on CAT (0) spaces.

Theorem 1.1. [18] Let K be a nonempty closed convex subset of a complete CAT (0) space X ,
and let F : K → K be a nonexpansive mapping. Let {xn} be a bounded sequence in K with
∆− lim sup

n→∞
xn = x and lim sup

n→∞
d(xn,Fxn) = 0. Then, x ∈ K and Fx = x.

Lemma 1.4. ([18]) Given {xn} ∈ X such that {xn}, ∆−converges to X and given y ∈ X with
y ̸= x, then lim sup

n→∞
d(xn, x) < lim sup

n→∞
d(xn, y).

Lemma 1.5. ([18]) Every bounded sequence in a completeCAT (0) space always has a ∆−convergent
subsequence.

Lemma 1.6. ([10]) Let K be closed convex subset of a complete CAT (0) space and {xn} be a
bounded sequence in K. Then asymptotic center of {xn} is in K.

Lemma 1.7. [8] Let K be a nonempty closed convex subset of CAT (0) space X . Let {xn} be
a bounded sequence in X with A({xn}) = {x}, and let {un} be a subsequence of {xn} with
A({un}) = {u}. Suppose that lim

n→∞
d(xn, u) exists. Then, x = u.
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In 2011, Lin et al.[20] gave the following some notations and lemmas.
Let {xn} be a bounded sequence in a CAT (0) space (X , d), and let K be a nonempty

closed convex subset of X which contains {xn}. The notation xn ⇀ w iff Ψ(w) = infx∈KΨ(x),
where Ψ(x) := lim sup

n→∞
d(xn, x). Then, we observe that

A({xn}) = x ∈ X : Ψ(x) = infu∈XΨ(u)

and
AK({xn}) = x ∈ K : Ψ(x) = infu∈KΨ(u).

Lemma 1.8. [20] Let {xn} be a bounded sequence in a CAT (0) space X , and let K be a nonempty
closed convex subset of X which contains {xn}. If xn ⇀ w, then w ∈ K.

Lemma 1.9. [21] Let K be a nonempty closed convex subset of CAT (0) space X , and let {xn} be
a bounded sequence in K. If ∆− limnxn = x, then xn ⇀ x.

A number of extensions and generalizations of nonexpansive mappings have been con-
sidered by many mathematicians, see [[1], [22], [27]], in recent years. In 2008, Suzuki [27]
introduced the concept of generalized nonexpansive mappings which is a condition on
mappings called (C) condition. Let K be a nonempty convex subset of a Banach space X ,
a mapping F : K → K is satisfy (C) condition if for all x, y ∈ K, 1

2d(x,Fx) ≤ d(x, y) im-
plies d(Fx,Fy) ≤ d(x, y). Suzuki [27] showed that the mapping satisfying (C) condition
is weaker than nonexpansiveness and stronger than quasi-nonexpansiveness. In 2011,
Aoyama and Kohsaka [1] introduced the class of α-nonexpansive mappings in the set-
ting of Banach spaces and obtained some fixed point results for such mappings. In 2017,
Pant and Shukla [22] introduced the following class of nonexpansive type mappings and
obtained some fixed point results for this class of mappings.This class of nonlinear map-
pings properly contains nonexpansive, Suzuki-type generalized nonexpansive mappings
and partially extends firmly nonexpansive and α-nonexpansive mappings.

In what follows, we give the following definition and lemma to be used in main results.

Definition 1.3. [22]. A mapping F : K → K is called a generalized α-nonexpansive mapping if
there exists an α ∈ [0, 1) and for each x, y ∈ K,

1

2
d(x,Fx) ≤ d(x, y) implies d(Fx,Fy) ≤ αd(Fx, y) + αd(Fy, x) + (1− 2α)d(x, y).

Furthermore, in [23], authors presented the following new class of nonexpansive type
mappings and obtained some fixed point results for this new class of mappings.

Definition 1.4. [23] A mapping F : K → K is called C-α nonexpansive mapping if there exists
an α ∈ [0, 1) and for each x, y ∈ K,

1

2
d(x,Fx) ≤ d(x, y) implies

d2(Fx,Fy) ≤ αd2(Fx, y) + αd2(x,Fy) + (1− 2α)d2(x− y).

A mapping satisfying the condition (C) isC-α nonexpansive mapping. Anα−nonexpansive
mapping is aC-α nonexpansive mapping and also generalizedα−nonexpansive mapping
is a C-α nonexpansive mapping, but from the examples given in [23] and [30] it can be
seen that the reverse is not true.

Proposition 1.2. Let K be a nonempty closed convex subset of a complete CAT (0) space X and
let F : K → X be a C-α nonexpansive mapping with Fix(F) ̸= ∅. Then, Fix(F) is a closed
convex subset of K.
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Proof. If xn is a sequence in Fix(F) and lim
n→∞

xn = x. Then, we have:

(1.2) d2(Fx, xn) ≤ d2(xn, x) +
α

1− α
d2(Fx, x).

This implies that
1− 2α

1− α
d2(Fx, x) ≤ 0.

Then Fx = x and Fix(F) is a closed set. Next, we want to show that Fix(F) is a convex
set. If x, y ∈ Fix(F) ⊆ K and z ∈ [x, y], then there exists t ∈ [0, 1] such that z = tx⊕(1−t)y.
Since K is convex, z ∈ K. Furthermore,

d2(Fz, z) ≤ td2(Fz, x) + (1− t)d2(Fz, y)− t(1− t)d2(x, y)

≤ td2(z, x) +
tα

1− α
d2(Fz, z) + (1− t)d2(z, y)

+
(1− t)α

1− α
d2(Fz, z)− t(1− t)d2(x, y)

= t(1− t)2d2(y, x) +
α

1− α
d2(Fz, z)

+t2(1− t)d2(x, y)− t(1− t)d2(x, y)

≤ α

1− α
d2(Fz, z)

Hence, Fz = z and Fix(F ) is a convex set. □

The concept of approximating fixed points for generalized nonexpansive mappings
plays an important role in the study of three-step iteration processes. Pant and Shukla
[23] studied the Noor iteration scheme for C-α nonexpansive mapping.

Let X be a real Banach space and K be a nonempty subset of X , and F : K → K be a
mapping. We have {an}, {bn} and {cn} real sequences in [0, 1]. Recently, Phuengrattana
and Suantai ([24]) defined the SP-iteration as follows:

(1.3)

 zn = (1− cn)xn + cnFxn,
yn = (1− bn)zn + bnFzn,
xn+1 = (1− an)yn + anFyn,∀n ∈ N,

where x1 ∈ K. They showed that the Mann, Ishikawa, Noor and SP-iteration are equiva-
lent and the SP-iteration converges better than the others for the class of continuous and
nondecreasing functions. In 2014, Basarır and Şahin [3] studied S-iteration process for
generalized nonexpansive mappings on CAT (0) space. In 2014, Kadıoglu and Yıldırım
[14] introduced Picard Normal S-iteration process and they established that the rate of
convergence of the Picard Normal S-iteration process is faster than other fixed point iter-
ation process that was in existence then. The Picard Normal S-iteration [14] as follows:

(1.4)

 zn = (1− bn)xn + bnFxn,
yn = (1− an)zn + anFzn,
xn+1 = Fyn,∀n ∈ N,

where x1 ∈ K.
In 2021, Temir and Korkut [31] introduced SP*-iteration scheme and they established

that the rate of convergence of the SP*-iteration scheme is faster than above fixed point
iteration process. Now we give SP*-iteration scheme:for arbitrary x1 ∈ K construct a
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sequence {xn} by

(1.5)

 zn = F((1− cn)xn + cnFxn),
yn = F((1− bn)zn + bnFzn),
xn+1 = F((1− an)yn + anFyn),∀n ∈ N,

In this paper, we apply SP*-iteration (1.5) in setting of CAT (0) space for generalized
nonexpansive mappings as follows

(1.6)

 zn = F((1− cn)xn ⊕ cnFxn),
yn = F((1− bn)zn ⊕ bnFzn),
xn+1 = F((1− an)yn ⊕ anFyn)∀n ∈ N,

where K is a nonempty closed convex subset of a CAT (0) space, x1 ∈ K, {an}, {bn} and
{cn} ∈ [0, 1].

In this paper, we study the convergence and the data dependence of the iteration
process (1.6) in CAT (0) spaces. This paper contains six sections. In Section 2, we give
some fixed point theorems and demi-closed principle of C-α nonexpansive mapping on
CAT (0) spaces. In Section 3, we prove some results related to the strong and ∆−convergence
of SP*-iteration process (1.6) for C-α nonexpansive mapping. In Section 4, also we give
an illustrative numerical example that satisfies C-α nonexpansive mapping. In Section
5, we prove the data dependence result of the SP*-iteration process (1.6) for contraction
mappings in CAT (0) spaces. In Section 6, we give application of SP*-iteration process for
integral equation.

2. FIXED POINT THEOREMS ON COMPLETE CAT (0) SPACES

The following theorem establishes a demiclosed principle for aC-α nonexpansive map-
ping on CAT (0) spaces.

Theorem 2.2. Let K be a nonempty closed convex subset of a complete CAT (0) space X , and let
F : K → X be a C-α nonexpansive mapping. Let {xn} be a bounded sequence in K with xn ⇀ x
and lim

n→∞
d(xn,Fxn) = 0. Then, x ∈ K and Fx = x.

Proof. Since xn ⇀ x, we know that x ∈ K and Ψ(x) = infu∈KΨ(u), where Ψ(u) :=
lim sup
n→∞

d(xn, u). Furthermore, we know that Ψ(x) = infΨ(u) : u ∈ X . Since F is a C-α

nonexpansive mapping,

d2(Fxn,Fx) ≤ αd2(Fxn, x) + αd2(xn,Fx) + (1− 2α)d2(xn, x)

By (1.1), then we have

d2(Fxn,Fx) ≤ αd2(Fxn, xn) + αd2(xn, x) + αd2(Fx, x)
+αd2(Fxn,Fx) + (1− 2α)d2(xn, x)

Thus we have

(1− α)d2(Fxn,Fx) ≤ αd2(Fx, x) + (1− α)d2(xn, x)

Hence we have

lim sup
n→∞

d2(Fxn,Fx) ≤ lim sup
n→∞

d2(xn, x) +
α

(1− α)
d2(Fx, x).
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This implies that

lim sup
n→∞

d2(xn,Fx) ≤ lim sup
n→∞

(d(xn,Fxn) + d(Fxn,Fx))2

≤ lim sup
n→∞

d2(Fxn,Fx)

≤ lim sup
n→∞

d2(xn, x) +
α

(1− α)
d2(Fx, x).

Besides , by (CN) inequality, we have

d2(xn,
1

2
x⊕ 1

2
Fx) ≤ 1

2
d2(xn, x) +

1

2
d2(xn,Fx)−

1

4
d2(x,Fx).

So, take limsup both sides, then we have

lim sup
n→∞

d2(xn,
1

2
x⊕ 1

2
Fx) ≤ 1

2
lim sup
n→∞

d2(xn, x) +
1

2
lim sup
n→∞

d2(xn, x)

−1

4
lim sup
n→∞

d2(Fx, x)

≤ lim sup
n→∞

d2(xn, x) +
α

2(1− α)
d2(x,Fx)− 1

4
d2(Fx, x).

So, we have

(
1

4
− α

2(1− α)
)d2(Fx, x) ≤ lim sup

n→∞
d2(xn, x)− lim sup

n→∞
d2(xn,

1

2
x⊕ 1

2
Fx).

Hence
(
1

4
− α

2(1− α)
)d2(Fx, x) ≤ Ψ(x)2 − (Ψ(

1

2
x⊕ 1

2
Fx))2 ≤ 0.

Therefore, Fx = x. □

Thus it is easy to get the following result for C-α nonexpansive mapping.

Theorem 2.3. Let K be a nonempty closed convex subset of a complete CAT (0) space X , and
let F : K → X be a C-α nonexpansive mapping. Let {xn} be a bounded sequence in K with
∆− lim sup

n→∞
xn = x and lim sup

n→∞
d(xn,Fxn) = 0. Then, x ∈ K and Fx = x.

Theorem 2.4. Let K be a nonempty closed convex subset of a complete CAT (0) space X , and let
F : K → K be a C-α nonexpansive mapping for all x ∈ K. Then, the following conditions are
equivalent:
(i) {Fnx} is bounded for some x ∈ K;
(ii) Fix(F) ̸= ∅.

Proof. Suppose that {Fnx} is bounded for some x ∈ K. For each n ∈ N, let xn = Fnx.
Since {xn} is bounded, there exists x̄ ∈ X such that A({xn}) = {x̄}. By Lemma 1.6, x̄ ∈ K.
Furthermore, we have

d2(xn,F x̄) ≤ αd2(x̄, xn) + αd2(xn−1,F x̄) + (1− 2α)d2(xn−1, x̄)

This implies that

lim sup
n→∞

d2(xn,F x̄) ≤ αlim sup
n→∞

d2(x̄, xn) + αlim sup
n→∞

d2(xn−1,F x̄)

+(1− 2α)lim sup
n→∞

d2(xn−1, x̄)

≤ (1− α)lim sup
n→∞

d2(x̄, xn) + αlim sup
n→∞

d2(xn,F x̄)
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So we have

(1− α)lim sup
n→∞

d2(xn,F x̄) ≤ (1− α)lim sup
n→∞

d2(x̄, xn)

Finally,

(Ψ(F x̄))2 = lim sup
n→∞

d2(xn,F x̄)

≤ lim sup
n→∞

d2(x̄, xn) = (Ψ(x̄))2.

Since A({xn}) = {x̄}, F x̄ = x̄. This shows that Fix(F) ̸= ∅. □

Next, we prove some convergence theorems of SP*-iteration process generated by (1.6)
to fixed point for C-α nonexpansive mappings in CAT (0) spaces.

3. CONVERGENCE OF SP*-ITERATION PROCESS FOR C-α NONEXPANSIVE MAPPINGS

Lemma 3.10. Let K be a nonempty closed convex subset of a complete CAT (0) space X , F be
a C-α nonexpansive mapping with Fix(F) ̸= ∅. For arbitrary chosen x1 ∈ K, let {xn} be
a sequence generated by (1.6) with {an}, {bn} and {cn} real sequences in [0, 1]. Assume that
lim inf
n→∞

(1 − cn)cn > 0, lim inf
n→∞

(1 − bn)bn > 0 and lim inf
n→∞

(1 − an)an > 0. Then Fix(F) ̸= ∅ if
and only if {xn} is bounded and lim

n→∞
d(xn,Fxn) = 0.

Proof. For any p ∈ Fix(F), and x ∈ K, since forF aC-α nonexpansive mapping, 1
2d(p,Fp) =

0 ≤ d(p, x) implies that

d2(Fp,Fx) ≤ αd2(Fp, x) + αd2(Fx, p) + (1− 2α)d2(p, x)

≤ αd2(Fp, x) + αd2(Fp,Fx) + (1− 2α)d2(p, x)

(1− α)d2(Fp,Fx) ≤ αd2(Fp, x) + (1− 2α)d2(p, x)

= (1− α)d2(p, x).

Thus, d(Fp,Fx) ≤ d(p, x) for all x ∈ K. Now, using (1.6), we have

d2(zn, p) = d2(F((1− cn)xn ⊕ cnFxn), p)(3.7)
≤ d2((1− cn)xn ⊕ cnFxn, p)
≤ (1− cn)d

2(xn, p) + cnd
2(Fxn, p)− (1− cn)cnd

2(Fxn, xn)
≤ d2(xn, p)− (1− cn)cnd

2(Fxn, xn)
≤ d2(xn, p).

Using (1.6) and (3.7), we get

d2(yn, p) = d2(F((1− bn)zn ⊕ bnFzn), p)(3.8)
≤ d2((1− bn)zn ⊕ bnFzn, p)
≤ (1− bn)d

2(zn, p) + bnd
2(Fzn, p)− (1− bn)bnd

2(Fzn, zn)
≤ d2(zn, p)− (1− bn)bnd

2(Fzn, zn)
≤ d2(zn, p) ≤ d2(xn, p).
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By using (1.6) and (3.8), we get

d2(xn+1, p) = d2(F((1− an)yn ⊕ anFyn), p)(3.9)
≤ d2((1− an)yn ⊕ anFyn, p)
≤ (1− an)d

2(yn, p) + and
2(Fyn, p)− (1− an)and

2(Fyn, yn)
≤ (1− an)d

2(xn, p) + and
2(yn, p)− (1− an)and

2(Fyn, yn)
≤ (1− an)d

2(xn, p) + and
2(xn, p)− (1− an)and

2(Fyn, yn)
≤ d2(xn, p)− (1− an)and

2(Fyn, yn)
≤ d2(xn, p).

This implies that {d(xn, p)} is bounded and non-increasing for all p ∈ Fix(F). Put
lim

n→∞
d(xn, p) = c. From (3.7) and (3.8), we have

lim sup
n→∞

d(zn, p) ≤ lim sup
n→∞

d(xn, p) = c

and
lim sup
n→∞

d(yn, p) ≤ lim sup
n→∞

d(zn, p) ≤ lim sup
n→∞

d(xn, p) = c.

On the other hand,

d(xn+1, p) = d(F((1− an)yn ⊕ anFyn, p))
≤ (1− an)d(yn, p) + and(Fyn, p)
≤ (1− an)d(yn, p) + and(yn, p)

≤ d(yn, p).

So we can get d(xn+1, p) ≤ d(yn, p). Therefore c ≤ lim inf
n→∞

d(yn, p). Thus we have c =

lim
n→∞

d(yn, p). Next

c = lim
n→∞

d(yn, p) ≤ lim
n→∞

d(zn, p) ≤ lim
n→∞

d(xn, p) = c.

Now, using (3.7), we know that

d2(zn, p) ≤ d2(xn, p)− (1− cn)cnd
2(Fxn, xn).

Thus
(1− cn)cnd

2(Fxn, xn) ≤ d2(xn, p)− d2(zn, p)

so that

d2(Fxn, xn) ≤
1

(1− cn)cn
[d2(xn, p)− d2(zn, p)]

We have
lim

n→∞
d2(Fxn, xn) ≤ 0.

Hence lim
n→∞

d(Fxn, xn) = 0.

Conversely, suppose that {xn} is bounded lim
n→∞

d(xn,Fxn) = 0. Let p ∈ A(K, {xn}).
So, we know that

lim sup
n→∞

d2(xn,Fp) ≤ lim sup
n→∞

d2(p, xn).

Finally,

(Ψ(Fp))2 = lim sup
n→∞

d2(xn,Fp)

≤ lim sup
n→∞

d2(p, xn) = (Ψ(p))2.
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Since A({xn}) = {p}, Fp = p. This shows that Fix(F) ̸= ∅. This implies that for Fp = p ∈
A(K, {xn}). Since X is complete CAT (0) then A(K, {xn}) is singleton. This completes the
proof. □

Now , we prove the ∆−convergence theorem of a iterative process generated by (1.6)
in CAT (0) spaces.

Theorem 3.5. Let X ,K,F and {xn} be as in Lemma 3.10 withFix(F) ̸= ∅. Then xn, ∆−converges
to a fixed point of F .

Proof. Lemma 3.10 guarantees that the sequence {xn} is bounded and lim
n→∞

d(Fxn, xn) =
0. LetW∆(xn) =

⋃
A({un}); where the union is taken over all subsequences {un} of {xn} :

We claim that W∆(xn) ⊆ Fix(F). Let u ∈W∆(xn). Then, there exists a subsequence {un}
of {xn} such that A({un}) = u. By Lemma 1.5 and Lemma 1.6, there exists a subsequence
{vn} of {un} such that ∆ − lim

n→∞
vn = v ∈ K. Now, we claim that u = v. Assume on con-

trary, that u ̸= v. By Lemma 3.10, lim
n→∞

d(xn, v) exists and by the uniqueness of asymptotic
centers, then we have

lim
n→∞

d(vn, v) < lim
n→∞

d(vn, u) ≤ lim
n→∞

d(un, u)

< lim
n→∞

d(un, v) = lim
n→∞

d(xn, v)

= lim
n→∞

d(vn, v),

which is contraction. Thus u = v ∈ Fix(F) and W∆(xn) ⊆ Fix(F). To show that {xn},
∆converges to a fixed point ofF , we show that W (xn) consists of exactly one point. Let
{un} be a subsequence of {xn}. By Lemma 1.5 and Lemma 1.6, there exists a subsequence
{vn} of un such that ∆ − lim

n→∞
vn = v ∈ K. Let A({un}) = {u} and A({xn}) = {x}. We

have already seen that u = v and v ∈ Fix(F). Finally, we claim that x = v. If not, then
existence lim

n→∞
d(xn, v) and uniqueness of asymptotic centers imply that

lim
n→∞

d(vn, v) < lim
n→∞

d(vn, x) ≤ lim
n→∞

d(xn, x)

< lim
n→∞

d(xn, v) = lim
n→∞

d(vn, v).

This is a contradiction and hence x = v ∈ Fix(F). Therefore, W∆(xn) = x. □

In the next result, we prove the strong convergence theorem as follows.

Theorem 3.6. Let F be a C-α nonexpansive mapping on a compact convex subset K of a complete
CAT (0) space X . {xn} be as in Lemma 3.10 with Fix(F) ̸= ∅. Then {xn} converges strongly to
a fixed point of F .

Proof. By Lemma 3.10, we have lim
n→∞

d(xn,Fxn) = 0. Since K is compact, by Lemma 1.5,

there exists a subsequence {xnk
} of {xn} and p ∈ K such that {xnk

} converges p. By (1.2),
we have d(xnk

,Fp) ≤ α
1−αd(Fxnk

, xnk
) + d(xnk

, p) for all k ≥ 0. Then {xnk
} converges

Fp. This implies Fp = p. SinceF is quasinonexpansive , we have d(xn+1, p) ≤ d(xn, p) for
all n ∈ N. Therefore {xn} converges strongly to p. □

Finally, we briefly discuss the strong convergence theorem using condition (I) intro-
duced by Senter and Dotson[25] in CAT (0) space X as follows.

Theorem 3.7. Let X ,K,F and {xn} be as in Lemma 3.10 with Fix(F) ̸= ∅. Also if, forF
satisfies condition (I), then {xn} defined by (1.6) converges strongly to a fixed point of F .
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Proof. By Lemma 3.10, we have lim
n→∞

d(xn, p) exists and so lim
n→∞

d(xn, F ix(F)) . Also by

Lemma 3.10, lim
n→∞

d(xn,Fxn) = 0.

It follows from condition (I) that lim
n→∞

f(d(xn, F ix(F)) ≤ lim
n→∞

d(xn,Fxn). That is,

lim
n→∞

f(d(xn, F ix(F)) = 0. Since f : [0,∞) → [0,∞) is a nondecreasing function satisfying

f(0) = 0 and f(r) > 0 for all r ∈ (0,∞), we have lim
n→∞

d(xn, F ix(F)) = 0. Thus , we have

a subsequence {xnk
} of {xn} and {yk} ⊂ Fix(F) such that d(xnk

, yk) <
1
2k

for all k ∈ N.
We can easily show that {yk} is a Cauchy sequence in Fix(F) and so it converges to a
point p. Since F (F) is closed, therefore p ∈ Fix(F) and {xnk

} converges strongly to p.
Since lim

n→∞
d(xn, p) exists, we have that xn → p. The proof is completed. □

4. EXAMPLE

Now we give the example of F : K → K be a C-α nonexpansive mapping with α ∈
[0, 1) which is not generalized α−nonexpansive mappings.

Example 4.1. Let K = [0, 4] ⊂ R endowed with usual norm in R. Define a mapping F : K → K
by

Fx =

{
x
5 , x ̸= 4
16
5 , x = 4

To verify that for α = 3
4 , F is a C- 34 nonexpansive mapping, we consider the following cases:

Case I:If x, y ̸= 4, then

α |Fx− y|2 + α |Fy − x|2 + (1− 2α) |x− y|2

=
3

4
|Fx− y|2 + 3

4
|Fy − x|2 − 1

2
|x− y|2

=
3

4
(
1

5
x− y)2 +

3

4
(
1

5
y − x)2 − 1

2
(x− y)2

=
3

4
(
1

25
x2 − 2

5
xy + y2) +

3

4
(
1

25
y2 − 2

5
xy + x2)− 1

2
x2 + xy − 1

2
y2

=
3

100
x2 − 6

20
xy +

3

4
y2 +

3

100
y2 − 6

20
xy +

3

4
x2 − 1

2
x2 + xy − 1

2
y2

= (
1

5
x− 1

5
y)2 +

6

25
x2 +

6

25
y2 +

12

25
xy ≥

∣∣∣∣15x− 1

5
y

∣∣∣∣2 = |Fx−Fy|2 .

Since for x, y ∈ [0, 4), 6
25x

2 + 6
25y

2 + 12
25xy ≥ 0, then F is a C- 34 nonexpansive mapping.

Case II:If x = 4, y ̸= 4, then

α |Fx− y|2 + α |Fy − x|2 + (1− 2α) |x− y|2

=
3

4
|Fx− y|2 + 3

4
|Fy − x|2 − 1

2
|x− y|2

=
3

4
(
16

5
− y)2 +

3

4
(
1

5
y − 4)2 − 1

2
(4− y)2

=
3

4
(
256

25
− 32

5
y + y2) +

3

4
(
1

25
y2 − 8

5
y + 16)− 16

2
+ 8y − 1

2
y2

= (
16

5
− 1

5
y)2 +

6

25
y2 +

82

25
y +

36

25
≥

∣∣∣∣165 − 1

5
y

∣∣∣∣2 = |Fx−Fy|2 .
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Since for y ∈ [0, 4), 6
25y

2 + 82
25y +

36
25 ≥ 0, then F is a C- 34 nonexpansive mapping.

Contrarily at x = 4, y = 3; we get

1

2
|x−Fx| = 1

2

∣∣∣∣4− 16

5

∣∣∣∣ = 2

5
≤ 1 = |x− y| .

Then, we have

α |Fx− y|+ α |Fy − x|+ (1− 2α) |x− y|

= α

∣∣∣∣165 − 3

∣∣∣∣+ α

∣∣∣∣34 − 4

∣∣∣∣+ (1− 2α) |4− 3|

=
1

5
α+

17

5
α+ 1− 2α = 1 +

8

5
α

<

∣∣∣∣165 − 3

5

∣∣∣∣ = 13

5
= 1 +

8

5
= |Fx−Fy| .

Hence F is not a generalized α−nonexpansive mapping for α = 3
4 .

We now compare convergence behavior of SP*-iteration process with other iteration
processes using Example 4.1. From Figure 1, we see that the SP*-iteration process con-
verges faster than SP-iteration and Picard Normal S-iteration processes. Let {an} = {bn} =
{cn} = 0.8 and initial point be x1 = 4. The fixed point of the mapping defined in Example
4.1 is 0. These can be seen in Figure 1.

FIGURE 1. Convergence of SP-iteration, Picard Normal S-iteration and
SP*-iteration processes to the fixed point 0 of the mapping defined in Ex-
ample 4.1.

5. DATA DEPENDENCE OF SP*-ITERATION PROCESS

In 2021, Temir and Korkut [31] introduced the iterative process generated by (1.6) (SP*-
iteration process) and they established that the rate of convergence of the SP*-iteration
process is faster than the SP-iteration process and the Picard Normal S-iteration process.
Also Temir [29] proved the stability of the SP*-iteration process in CAT (0) spaces. In this
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paper, we also prove data depence result of the SP*-iterative process. First, we give the
following strong convergence theorem.

Theorem 5.8. [29] Let K be a nonempty closed convex subset of a complete CAT (0) space X
, F : X → X be a contraction mapping with Fix(F) ̸= ∅. Let {xn} be a sequence generated
by (1.6) with real sequences {cn}, {bn} and {an} ∈ [0, 1] with

∑∞
n=1 an = ∞. Then {xn}∞n=1

converges strongly to an unique fixed point of F .

In what follows, we shall make use of the following well-known lemma.

Lemma 5.11. ([28]) Let {κn} be a nonnegative sequence for which one assumes that there exists
an n0 ∈ N such that, for all n ≥ n0,

κn+1 ≤ (1− ϑn)κn + ϑnσn

is satisfied, where ϑn ∈ (0, 1) for all n ∈ N,
∑∞

n=0 ϑn = ∞ and σn ≥ 0, ∀n ∈ N. Then the
following holds: 0 ≤ lim sup

n→∞
κn ≤ lim sup

n→∞
σn.

Definition 5.5. ([2]) Let F , F̃ : X → X be two operators. We say that F̃ is an approximate
operator for F if, for all x ∈ X and for a fixed ϵ > 0, we have d(Fx, F̃x) ≤ ϵ.

By using this definition, we now prove the data dependence result for the iteration
process defined by (1.6).

Theorem 5.9. Suppose K,X ,F are as in Theorem 5.8. Consider F̃ being an approximate operator
for the contraction mapping F with possible numerical error ϵ > 0. Further, {xn} is the sequence
(1.6), for F , and define approximate sequence ωn for F̃ as follows:

(5.10)


τn = F̃((1− cn)ωn ⊕ cnF̃ωn),

υn = F̃((1− bn)τn ⊕ bnF̃τn),
ωn+1 = F̃((1− an)υn ⊕ anF̃υn)∀n ∈ N,

where K is a nonempty closed convex subset of a CAT (0) space, x1 ∈ K, {an}, {bn} and {cn} ∈
[0, 1] satisfying the condition; 1

2 ≤ an,∀n ∈ N.
If Fp = p and F̃ p̃ = p̃ such that lim

n→∞
ωn = p̃ then we have d(p, p̃) ≤ 11ϵ

1−θ .

Proof. Let us consider (1.6) and (5.10), we have

d(zn, τn) ≤ d(F((1− cn)xn ⊕ cnFxn), F̃((1− cn)ωn ⊕ cnF̃ωn))

≤ d(F((1− cn)xn ⊕ cnFxn),F((1− cn)ωn ⊕ cnF̃ωn))

+ d(F((1− cn)ωn ⊕ cnF̃ωn), F̃((1− cn)ωn ⊕ cnF̃ωn))

≤ θ[d((1− cn)xn ⊕ cnFxn, (1− cn)ωn ⊕ cnF̃ωn)] + ϵ

≤ θ[(1− cn)d(xn, ωn) + cnd(Fxn, F̃ωn)] + ϵ

≤ θ[(1− cn)d(xn, ωn) + cnd(Fxn,Fωn) + d(Fωn, F̃ωn)] + ϵ

≤ θ[(1− cn)d(xn, ωn) + θcnd(xn, ωn) + cnϵ] + ϵ

≤ θ[(1− cn(1− θ))d(xn, ωn) + cnϵ] + ϵ.(5.11)
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By using (1.6) and (5.11), we have

d(yn, υn) ≤ d(F((1− bn)zn ⊕ bnFzn), F̃((1− bn)τn ⊕ cnF̃τn))
≤ d(F((1− bn)zn ⊕ bnFzn),F((1− bn)τn ⊕ bnF̃τn))
+ d(F((1− bn)τn ⊕ bnF̃τn), F̃((1− bn)τn ⊕ bnF̃τn))

≤ θ[d((1− bn)zn ⊕ bnFzn, (1− bn)τn ⊕ bnF̃τn)] + ϵ

≤ θ[(1− bn)d(zn, τn) + bnd(Fzn, F̃τn)] + ϵ

≤ θ[(1− bn)d(zn, τn) + bnd(Fzn,Fτn) + d(Fτn, F̃τn)] + ϵ

≤ θ[(1− bn)d(zn, τn) + θbnd(zn, τn) + ϵ] + ϵ

≤ θ[(1− bn(1− θ))d(zn, τn) + bnϵ] + ϵ

≤ θ2[(1− bn(1− θ))(1− cn(1− θ))d(xn, ωn) + cnϵ(1− bn(1− θ))]

+ θbnϵ+ θϵ+ ϵ

≤ (1− bn(1− θ))(1− cn(1− θ))d(xn, ωn) + cnϵ(1− bn(1− θ))(5.12)
+ θbnϵ+ θϵ+ ϵ.

By using (1.6) and (5.12), we have

d(xn+1, ωn+1) ≤ d(F((1− an)yn ⊕ anFυn), F̃((1− an)υn ⊕ anF̃υn))
≤ d(F((1− an)yn ⊕ anFyn),F((1− an)υn ⊕ anF̃υn))
+ d(F((1− an)υn ⊕ anF̃υn), F̃((1− an)υn ⊕ anF̃υn))

≤ θ[d((1− an)υn ⊕ anFyn, (1− an)υn ⊕ anF̃υn)] + ϵ

≤ θ[(1− an)d(yn, υn) + and(Fyn, F̃υn)] + ϵ

≤ θ[(1− an)d(yn, υn) + and(Fyn,Fυn) + d(Fυn, F̃υn)] + ϵ

≤ θ[(1− an)d(yn, υn) + θbnd(yn, υn) + ϵ] + ϵ

≤ θ[(1− an(1− θ))d(yn, υn) + anϵ] + ϵ

≤ θ(1− an(1− θ))[(1− bn(1− θ))(1− cn(1− θ))d(xn, ωn)(5.13)
+ cnϵθ(1− bn(1− θ)) + θbnϵ+ θϵ+ anϵ+ ϵ] + ϵ.

Since {bn}, {cn} ∈ [0, 1] and θ ∈ [0, 1), it implies that (1−bn(1−θ)) < 1 and (1−cn(1−θ)) <
1 and rearranging (5.13), we get

d(xn+1, ωn+1) ≤ (1− an(1− θ))d(xn, ωn)(5.14)
+ (1− an(1− θ)) + anϵ+ 5ϵ.

We note that 1− an ≤ an, so we obtain

d(xn+1, ωn+1) ≤ (1− an(1− θ))d(xn, ωn) + anϵ+ 5ϵ(1− an + an)(5.15)

≤ (1− an(1− θ))d(xn, ωn) + an(1− θ)
11ϵ

(1− θ)
.

Define

d(xn, ωn) = κn

an(1− θ) = ϑn
11ϵ

(1− θ)
= σn
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Then from Lemma 5.11 and (5.15), we obtain

(5.16) 0 ≤ lim sup
n→∞

d(xn, ωn) ≤ lim sup
n→∞

11ϵ

(1− θ)
.

By Theorem 5.8, we have lim
n→∞

xn = p, and by assumption, we have lim
n→∞

ωn = p̃. By using
these facts together with (5.16), we obtain

d(p, p̃) ≤ 11ϵ

1− θ
.

□

6. APPLICATION TO NONLINEAR INTEGRAL EQUATION

In this article, our interest is to approximate the solution of the following integral equa-
tion (6.19) via of SP*-iteration process. Let C([a, b]) denote the space of all continuous
functions on the interval [a, b], endowed with the metric, d∞(x, y) = maxs∈[a,b]|x(s) −
y(s)|;∀x, y ∈ C([a, b]). In this section we will be interested in the following delay differen-
tial equation:

(6.17) x́(t) = ϕ(t, x(t), x(t− µ)), t ∈ [t0, b],

with initial condition

(6.18) x(t) = ψ(t), t ∈ [t0 − µ, t0].

To achieve our aim, the following axioms are considered:
(i) t0, b ∈ R, µ > 0;

(ii) ϕ ∈ C([t0, b]× R2,R);
(iii) ψ ∈ C([t0 − µ, b],R);
(iv) There exists Lϕ > 0, such that;

|ϕ(t, x1, x2)− ϕ(t, y1, y2)| ≤ Lϕ(|x1 − y1|+ |x2 − y2|,∀xi, yi ∈ R, i = 1, 2, t ∈ [t0, b];

(v) 2Lϕ(b− t0) < 1.
Next, the (6.17) and (6.18) are reformulated as the following integral equation:

(6.19) x(t) =

{
ψ(t), t ∈ [t0 − µ, t0]

ψ(t0) +
∫ t

t0
ϕ(s, x(s), x(s− µ))ds, t ∈ [t0, b].

The following result can be found in [7].

Theorem 6.10. Assume that conditions (i)-(v) are hold. Then the problem (6.17)-(6.18) has a
unique solution, say p ∈ C([t0 − µ, b],R) ∩ C1([t0, b],R) and p = lim

n→∞
Tn(x) for any x ∈

C([t0 − µ, b],R).

Next, we will prove that SP*-iteration process converges strongly to the unique solution
of integral equation (6.19). For this, we give our main result in this section as follows:

Theorem 6.11. Assume that conditions (i)-(v) are hold. Then the problem (6.17)-(6.18) has a
unique solution, say p ∈ C([t0 − µ, b],R) ∩ C1([t0, b],R). Let {xn} be a sequence generated by
the algorithm (1.6) with real sequences {cn}, {bn} and {an} ∈ [0, 1] with

∑∞
n=1 an = ∞. Then

{xn} converges to p.

Proof. Let

(6.20) Fx(t) =

{
ψ(t), t ∈ [t0 − µ, t0]

ψ(t0) +
∫ t

t0
ϕ(s, x(s), x(s− µ))ds, t ∈ [t0, b].
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be an integral operator with respect to (6.19). Let {xn} be a sequence defined by the SP*-
iteration process for the operator (6.20). Denote by p be the fixed point of F . We want to
show xn → p as n→ ∞. For t ∈ [t0−µ, t0], it is easy to see that xn → p as n→ ∞. Assume
t ∈ [t0, b]. We define ηn = (1− cn)xn ⊕ cnFxn; zn = Fηn; τn = (1− bn)zn ⊕ bnFzn; yn =
Fτn; ξn = (1− an)yn ⊕ anFyn; xn+1 = Fξn, n ∈ N. Using (1.6) and (iv), we obtain

d∞(ηn, p) = d∞(((1− cn)xn ⊕ cnFxn), p)
≤ (1− cn)d∞(xn, p) + cnd∞(Fxn, p)
≤ (1− cn)d∞(xn, p)

+ maxt∈[t0−µ,b]

∣∣ψ(t0) + cn

∫ t

t0

ϕ(s, xn(s), xn(s− µ))ds

− ψ(t0)−
∫ t

t0

ϕ(s, p(s), p(s− µ))ds
∣∣

≤ (1− cn)d∞(xn, p)

+ cnmaxt∈[t0−µ,b]

∫ t

t0

|ϕ(s, xn(s), xn(s− µ))ds

− ϕ(s, p(s), p(s− µ))ds|
≤ (1− cn)d∞(xn, p)

+ cnmaxt∈[t0−µ,b]

∫ t

t0

Lϕ(|xn(s)− p(s)|

+ |xn(s− µ)− p(s− µ)|)ds
≤ (1− cn)d∞(xn, p)

+ cn

∫ t

t0

Lϕmaxt∈[t0−µ,b](|xn(s)− p(s)|

+ maxt∈[t0−µ,b]|xn(s− µ)− p(s− µ)|)ds

≤ (1− cn)d∞(xn, p) + cn

∫ t

t0

Lϕ(d∞(xn, p)

+ d∞(xn, p))ds

≤ (1− cn)d∞(xn, p) + 2cnLϕ(b− t0)d∞(xn, p)

≤ (1− cn(1− 2Lϕ(b− t0)))d∞(xn, p).

Thus,

(6.21) d∞(ηn, p) ≤ (1− cn(1− 2Lϕ(b− t0)))d∞(xn, p).

Using (1.6), (iv) and (6.21), we obtain

d∞(zn, p) = d∞(Fηn, p) = d∞(Fηn,Fp)
= maxt∈[t0−µ,b]

∣∣Fηn −Fp
∣∣

= maxt∈[t0−µ,b]

∣∣ψ(t0) + ∫ t

t0

ϕ(s, ηn(s), ηn(s− µ))ds

− ψ(t0)−
∫ t

t0

ϕ(s, p(s), p(s− µ))ds
∣∣
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= maxt∈[t0−µ,b]

∣∣ ∫ t

t0

ϕ(s, ηn(s), ηn(s− µ))ds

− ϕ(s, p(s), p(s− µ))ds
∣∣

≤ maxt∈[t0−µ,b]

∫ t

t0

Lϕ

(
|ηn(s)− p(s)|

+ |ηn(s− µ)− p(s− µ)|
)
ds

≤
∫ t

t0

Lϕ

(
|maxt∈[t0−µ,b]|ηn(s)− p(s)|

+ maxt∈[t0−µ,b]|ηn(s− µ)− p(s− µ)|
)
ds

=

∫ t

t0

Lϕ

(
d∞(ηn(s), p(s)) + d∞(ηn(s− µ), p(s− µ))

)
ds

=

∫ t

t0

Lϕ

(
d∞(ηn(s), p(s)) + d∞(ηn(s), p(s))

)
ds

≤ 2Lϕ(b− t0)d∞(ηn(s), p(s))

≤ 2Lϕ(b− t0)(1− cn(1− 2Lϕ(b− t0)))d∞(xn, p).

Thus,

(6.22) d∞(zn, p) ≤ 2Lϕ(b− t0)(1− cn(1− 2Lϕ(b− t0)))d∞(xn, p).

Using (1.6) and (iv), we obtain

d∞(τn, p) = d∞(((1− bn)zn ⊕ bnFzn), p)
≤ (1− bn)d∞(zn, p) + bnd∞(Fzn, p)
≤ (1− bn)d∞(zn, p)

+ maxt∈[t0−µ,b]

∣∣ψ(t0) + bn

∫ t

t0

ϕ(s, zn(s), zn(s− µ))ds

− ψ(t0)−
∫ t

t0

ϕ(s, p(s), p(s− µ))ds
∣∣

≤ (1− bn)d∞(zn, p)

+ bnmaxt∈[t0−µ,b]

∫ t

t0

|ϕ(s, zn(s), zn(s− µ))ds

− ϕ(s, p(s), p(s− µ))ds|
≤ (1− bn)d∞(zn, p)

+ bnmaxt∈[t0−µ,b]

∫ t

t0

Lϕ(|zn(s)− p(s)|

+ |zn(s− µ)− p(s− µ)|)ds
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≤ (1− bn)d∞(zn, p)

+ bn

∫ t

t0

Lϕmaxt∈[t0−µ,b](|zn(s)− p(s)|

+ maxt∈[t0−µ,b]|zn(s− µ)− p(s− µ)|)ds

≤ (1− bn)d∞(zn, p) + bn

∫ t

t0

Lϕ(d∞(zn, p)

+ d∞(zn, p))ds

≤ (1− bn)d∞(zn, p) + 2bnLϕ(b− t0)d∞(zn, p)

≤ (1− bn(1− 2Lϕ(b− t0)))d∞(zn, p).

Thus,

(6.23) d∞(τn, p) ≤ (1− bn(1− 2Lϕ(b− t0)))d∞(zn, p).

Using (1.6), (iv) and (6.23), we obtain

d∞(yn, p) = d∞(Fτn, p) = d∞(Fτn,Fp)
= maxt∈[t0−µ,b]

∣∣Fτn −Fp
∣∣

= maxt∈[t0−µ,b]

∣∣ψ(t0) + ∫ t

t0

ϕ(s, τn(s), τn(s− µ))ds

− ψ(t0)−
∫ t

t0

ϕ(s, p(s), p(s− µ))ds
∣∣

= maxt∈[t0−µ,b]

∣∣ ∫ t

t0

ϕ(s, τn(s), τn(s− µ))ds

− ϕ(s, p(s), p(s− µ))ds
∣∣

≤ maxt∈[t0−µ,b]

∫ t

t0

Lϕ

(
|τn(s)− p(s)|

+ |τn(s− µ)− p(s− µ)|
)
ds

≤
∫ t

t0

Lϕ

(
|maxt∈[t0−µ,b]|τn(s)− p(s)|

+ maxt∈[t0−µ,b]|τn(s− µ)− p(s− µ)|
)
ds.

Then we get

d∞(yn, p) ≤
∫ t

t0

Lϕ

(
d∞(τn(s), p(s)) + d∞(τn(s− µ), p(s− µ))

)
ds

=

∫ t

t0

Lϕ

(
d∞(τn(s), p(s)) + d∞(τn(s), p(s))

)
ds

≤ 2Lϕ(b− t0)d∞(τn(s), p(s))

≤ 2Lϕ(b− t0)(1− bn(1− 2Lϕ(b− t0)))d∞(zn, p).

Thus,

(6.24) d∞(yn, p) ≤ 2Lϕ(b− t0)(1− bn(1− 2Lϕ(b− t0)))d∞(zn, p).
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Using (1.6) and (iv), we obtain

d∞(ξn, p) = d∞(((1− an)yn ⊕ bnFyn), p)
≤ (1− an)d∞(yn, p) + and∞(Fyn, p)
≤ (1− an)d∞(yn, p)

+ maxt∈[t0−µ,b]

∣∣ψ(t0) + an

∫ t

t0

ϕ(s, yn(s), yn(s− µ))ds

− ψ(t0)−
∫ t

t0

ϕ(s, p(s), p(s− µ))ds
∣∣

≤ (1− an)d∞(yn, p)

+ anmaxt∈[t0−µ,b]

∫ t

t0

|ϕ(s, yn(s), yn(s− µ))ds

− ϕ(s, p(s), p(s− µ))ds|
≤ (1− an)d∞(yn, p)

+ anmaxt∈[t0−µ,b]

∫ t

t0

Lϕ(|yn(s)− p(s)|

+ |yn(s− µ)− p(s− µ)|)ds
≤ (1− an)d∞(yn, p)

+ an

∫ t

t0

Lϕmaxt∈[t0−µ,b](|yn(s)− p(s)|

+ maxt∈[t0−µ,b]|yn(s− µ)− p(s− µ)|)ds

≤ (1− an)d∞(yn, p) + an

∫ t

t0

Lϕ(d∞(yn, p)

+ d∞(yn, p))ds

≤ (1− an)d∞(yn, p) + 2bnLϕ(b− t0)d∞(yn, p)

≤ (1− an(1− 2Lϕ(b− t0)))d∞(yn, p).

Thus,

(6.25) d∞(ξn, p) ≤ (1− an(1− 2Lϕ(b− t0)))d∞(yn, p).

Using (1.6), (iv) and (6.25), we obtain

d∞(xn+1, p) = d∞(Fξn, p) = d∞(Fξn,Fp)
= maxt∈[t0−µ,b]

∣∣Fξn −Fp
∣∣

= maxt∈[t0−µ,b]

∣∣ψ(t0) + ∫ t

t0

ϕ(s, ξn(s), ξn(s− µ))ds

− ψ(t0)−
∫ t

t0

ϕ(s, p(s), p(s− µ))ds
∣∣

= maxt∈[t0−µ,b]

∣∣ ∫ t

t0

ϕ(s, ξn(s), ξn(s− µ))ds

− ϕ(s, p(s), p(s− µ))ds
∣∣

≤ maxt∈[t0−µ,b]

∫ t

t0

Lϕ

(
|ξn(s)− p(s)|

+ |ξn(s− µ)− p(s− µ)|
)
ds
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≤
∫ t

t0

Lϕ

(
|maxt∈[t0−µ,b]|ξn(s)− p(s)|

+ maxt∈[t0−µ,b]|ξn(s− µ)− p(s− µ)|
)
ds

=

∫ t

t0

Lϕ

(
d∞(ξn(s), p(s)) + d∞(ξn(s− µ), p(s− µ))

)
ds

=

∫ t

t0

Lϕ

(
d∞(ξn(s), p(s)) + d∞(ξn(s), p(s))

)
ds

≤ 2Lϕ(b− t0)d∞(ξn(s), p(s)) ≤ 2Lϕ(b− t0)(1− an(1− 2Lϕ(b− t0)))d∞(yn, p).

Thus, from (6.22), (6.24) we obtain

d∞(xn+1, p) ≤ (2Lϕ(b− t0))
3(1− an(1− 2Lϕ(b− t0)))

(1− bn(1− 2Lϕ(b− t0)))

(1− cn(1− 2Lϕ(b− t0)))d∞(xn, p).(6.26)

From assumption (v) and the fact that (1−cn(1−2Lϕ(b− t0))) < 1 and (1−bn(1−2Lϕ(b−
t0))) < 1, (6.26) reduces

(6.27) d∞(xn+1, p) ≤ (1− an(1− 2Lϕ(b− t0)))d∞(xn, p)..

Via induction, we obtain

d∞(xn+1, p) ≤
n∏

k=1

[1− ak((1− 2Lϕ(b− t0)))]d∞(x1, p).

So, we know that 1− x ≤ e−x for all x ∈ [0, 1]. Hence we have

d∞(xn+1, p) ≤ e−(1−2Lϕ(b−t0))
∑n

k=1 akd∞(x1, p).

Taking the limit of both sides of the above inequality , xn → p as n→ ∞. Hence, the proof
is complete. □

7. CONCLUSIONS

We obtain some results on the strong and ∆-convergence of SP*-iteration process (1.6)
for C-α nonexpansive mappings in nonlinear CAT (0) spaces. The result herein comple-
ments the some results of [23, 30] from linear setting to CAT (0) spaces. We also prove the
data depence result of SP*-iteration process generated by (1.6) in this paper. In addition,
we give an illustrative numerical example that satisfies C-α nonexpansive mapping. As
seen in Example 4.1, the mapping is not a generalized α−nonexpansive mapping. Further
we apply to the approximate the solution of the integral equation. Lastly, in future stud-
ies, iteration process can be developed and iteration that converges faster than prominent
iterations can be presented.
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