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Power Domination in Generalized Mycielskian of Cycles

K. SREETHUand SEEMA VARGHESE

ABSTRACT. Let G = G(V,E) be a graph. A set S ⊆ V is a power dominating set of G if S observes
all the vertices in V, following two rules: domination and propagation. The cardinality of a minimum power
dominating set is called the power domination number. In this paper, we compute the power domination
number of generalized m-Mycielskian of a cycle, Cn. We found that it depends on the numbers n and m.

1. INTRODUCTION

A set S ⊆ V is a dominating set of the graph G(V,E), if each element v ∈ V is either
in S or adjacent to some element in S. The problem of finding a dominating set that has
the minimum cardinality is known as dominating set problem. Many variations of domi-
nation problem were introduced and studied. The power dominating set problem is one
of them. It was introduced [7] as a graphical representation of the famous observability
problem of placing Phasor Measurement Units (PMUs) in an electrical network [2].

Let G(V,E) represent an electric network with a vertex v ∈ V, a node and an edge
e ∈ E, a transmission line. For S ⊆ V, the open neighbourhood of S in G, NG(S), consists
of all adjacent vertices of S. M(S) is the set monitored by S obtained by applying the rule
of domination, initially, once and the rule of propagation iteratively, afterward as follows
[4]:

▷ (domination rule) M(S)← S ∪N(S),
▷ (propagation rule) as long as there exists v ∈M(S) such that

N(v)\M(S) = {w}, set M(S)←M(S) ∪ {w}. (i.e., propagation from v to w)

Definition 1.1. [4] A subset S ⊆ V is called a power dominating set if M(S) = V. A power
dominating set with the minimum cardinality is called a minimum power dominating
set or γP -set. The cardinality of a minimum power dominating set is called the power
domination number, γP .

The problem was found to be NP-complete, even when restricted to chordal graphs
or bipartite graphs [7]. However, a polynomial time algorithm was found for trees [7]
and block graphs [16]. The problem was also addressed in the graph classes like grids [5],
honeycomb networks [6], Knödel graphs, Hanoi graphs [14] and some other graph classes
[3, 4]. The Mycielskian of a graph G, denoted by µ(G), is a triangle-free extension of G
[1, 9]. The Mycielskian has a higher chromatic number than the underlying graph. The
generalization of Mycielskian graphs is known as the generalized m-Mycielskian which
is defined as follows:

Definition 1.2. [8] Let G be a graph with vertex set V 0 =
{
v01 , v

0
2 , . . . , v

0
n

}
and edge set E0.

Given an integer m ≥ 1, the generalized m-Mycielskian of G denoted by µm(G), is the
graph with vertex set V 0 ∪ V 1 ∪ V 2 ∪ . . . V m ∪ {r} , where V i =

{
vij : v

0
j ∈ V 0

}
is the ith
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distinct copy of V 0 for i = 1, 2, . . . ,m and edge set E0 ∪
(
∪m−1
i=0

{
vijv

i+1
j′ : v0j v

0
j′ ∈ E0

})
∪{

vmj r : vmj ∈ V m
}

. 1-Mycielskian of a graph G is called the Mycielskian of G.

Due to the structure of Mycielskian graphs, various graph parameters were studied
and compared [8]. The power domination number of Mycielskian of spiders was also
computed [13] and characterized spiders in the following way.

Theorem 1.1. [13] Let T be a spider. Then γP(µ(T )) = 1 if and only if any one of the following
holds.

(i) T is a path
(ii) T is a wounded spider

(iii) T is a single odd legged spider.

Theorem 1.2. [13] γP(µ(T )) = 2, if and only if T is an even spider or a multiple odd legged
spider which is not a wounded spider.

The power domination number of Mycielskian of n-spiders(SPn) was also investigated
in [11]. They provided tight upper and lower bounds of γP of Mycielskian of n-spiders
and classified n-spiders that attain both bounds, which is as follows:

Theorem 1.3. [11] For an n-spider SPn, n > 1, 1 ≤ γP(µ(SPn)) ≤ n.

Theorem 1.4. [11] γP(µ(SPn)) = 1, n > 1, if and only if
i. There is no m-kid in SPn and

ii. e-kids occur in pairs.

Theorem 1.5. [11]
γP(µ(SPn)) = n, n > 1, if and only if

i. Nm ≥ n− 1 or
ii. Nm = n − 2 and the head sequence begins (or ends) with an e-kid followed (respectively

preceded) by an s-kid.

In this paper, we compute the power domination number of m-Mycielskian of cycles,
m ≥ 1 (Figure 1).

Definition 1.3. Let Cn be a cycle with n vertices c01, c02, . . . , c0n. If n is even we call the cycle
as an even cycle otherwise as an odd cycle. cji denote the twin vertex of c0i in the twin set V j .

FIGURE 1. C6 and µ4(C6)

All graphs considered here are simple and undirected. For all the other definitions and
notations refer [11, 15].
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2. POWER DOMINATION IN m-MYCIELSKIAN OF CYCLES

We use the power domination subgraph relation, given by Stephen et al. in [12], to
compute the power domination number of µm(Cn).

Theorem 2.6. [12] (Power domination-subgraph relation) Let H1, H2, . . . ,Hk be pair wise
disjoint subgraphs of G satisfying the following conditions

(1) V (Hi)=V1(Hi)∪V2(Hi) where V1(Hi)={x∈V (Hi)|x ∼ y for some y ∈ V (G)−V (Hi)}
and V2(Hi)={x ∈ V (Hi)|x ≁ y for all y∈V (G)−V (Hi)} .

(2) V2(Hi) ̸= ∅ and for each x ∈ V1(Hi), there exists at least two vertices in V2(Hi) which
are adjacent to x.

If V1(Hi) is observed and if γPi
is the minimum number of vertices required to observe V (Hi),

then γP (G) ≥
∑k

i=1 γPi
.

Lemma 2.1. If S is a power dominating set of µm(Cn), then V i ∩N [S] ̸= ∅.

Proof. If possible, suppose V i ∩N [S] = ∅, then the only way to monitor the vertices in V i

is the propagation from V j , j = i+ 1 or i− 1. But each vertex in V j is adjacent to at least
two vertices in V i. Thus no propagation is possible to V i. Therefore S is not a PDS. □

Corollary 2.1. For a cycle Cn, γP (µm(Cn)) ≥ ⌈m+1
3 ⌉.

Proof. The proof follows from the fact that there are m + 1 twin sets V 0, V 1, . . . , V m, and
for a vertex x, N [x] have a non-empty intersection with at most three twin sets.

□

First, we consider the case when m = 1, i.e., the 1-Mycielskian of cycles.

Theorem 2.7. For a Cycle Cn, γP (µ(Cn)) =

{
1 if n = 3

2 otherwise
.

Proof. It is easy to observe that any vertex in V 0 monitor the whole graph µ(C3). Now,
let n > 3. If possible, assume that γP (µ(Cm)) = 1 and S = {x} , be the γP -set. Then by
Lemma 2.1, the vertex x must be from V 0 or V 1. But, M(x) = N [x] ⊂ V in both cases.
Thus S cannot be a PDS and γP > 1. Now, let S =

{
c01, r

}
. Then, every vertex is monitored

either by domination or propagation from S. Thus γP = 2.
□

Now, we are computing the power domination number of m-Mycielskian of cycles,
m > 1. Let us First consider even cycles Cn, n > 3. Here we are using Theorem 2.6
to obtain a lower bound to γP (µm(Cn)). For this we are using the following types of
subgraphs to form Hi (Figure 2).

i) A is the subgraph induced by the vertices{
c01, c

0
2, . . . , c

0
n

}
∪
{
c11, c

1
3, . . . , c

1
n−1

}
Then we can partition this vertex set as
V1(A) =

{
c11, c

1
3, . . . , c

1
n−1

}
and

V2(A) =
{
c01, . . . , c

0
n

}
ii) B1 is the subgraph induced by the vertices{

cm1 , cm3 , . . . , cmn−1

}
∪
{
r, cm−1

2 , cm−1
4 , . . . , cm−1

n

}
.

Then we can partition this vertex set as
V1(B1) =

{
r, cm−1

2 , cm−1
4 , . . . , cm−1

n

}
and

V2(B1) =
{
cm1 , cm3 , . . . , cmn−1

}
.
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FIGURE 2. µ6(C4) and its partition

iii) B2 is the subgraph induced by the vertices
{cm2 , cm4 , . . . , cmn } ∪

{
r, cm−1

1 , cm−1
3 , . . . , cm−1

n−1

}
.

Then we can partition this vertex set as
V1(B2) =

{
r, cm−1

1 , cm−1
1 , . . . , cn−1

}
and

V2(B2) = {cm2 , cm4 , . . . , cmn } .
iv) Dj is the subgraph induced by the vertices{

cj2, c
j
4, . . . , c

j
n

}
∪
{
cj+2
2 , cj+2

4 , . . . , cj+2
n

}
∪
{
cj+1
1 , cj+1

3 , . . . , cj+1
n−1

}
.

Then we can partition this vertex set as
V1(Dj) =

{
cj2, c

j
4, . . . , c

j
n

}
∪
{
cj+2
2 , cj+2

4 , . . . , cj+2
n

}
and

V2(Dj) =
{
cj+1
1 , cj+1

3 , . . . , cj+1
n−1

}
.

v) Ej is the subgraph induced by the vertices{
cj1, c

j
3, . . . , c

j
n−1

}
∪
{
cj+2
1 , cj+2

3 , . . . , cj+2
n−1

}
∪
{
cj+1
2 , cj+1

4 , . . . , cj+1
n

}
.

Then we can partition this vertex set as
V1(Ej) =

{
cj1, c

j
3, . . . , c

j
n−1

}
∪
{
cj+2
1 , cj+2

3 , . . . , cj+2
n−1

}
and

V2(Ej) =
{
cj+1
2 , cj+1

4 , . . . , cj+1
n

}
.

All these subgraphs satisfy the conditions of Theorem 2.6 with γPi = 1.
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Lemma 2.2. For an even cycle Cn, γP (µm(Cn)) ≥


2⌈m3 ⌉+ 1, if m ≡ 0(mod 3)

2⌈m3 ⌉ − 1, if m ≡ 1(mod 3)

2⌈m3 ⌉, if m ≡ 2(mod 3)

.

Proof. Consider the three possible values of m.
Case 1 : m ≡ 2(mod 3).

Consider the pair wise disjoint subgraphs as D0, E0, D3, E3, . . . , Dm−2, Em−2 and∑
γPi

= 2
(
m+1
3

)
= 2⌈m3 ⌉.

Case 2 : m ≡ 0(mod 3).
Case 2.1 : m ̸≡ 0(mod 6).

Consider the pair wise disjoint subgraphs as A,D1, D2, E4, E5, . . . , Dm−2, B1 and∑
γPi

= 2(m3 ) + 1 = 2⌈m3 ⌉+ 1.
Case 2.2 : m ≡ 0(mod 6).

Consider the pair wise disjoint subgraphs as A,D1, D2, E4, E5, . . . , Em−2, B2, then∑
γPi

= 2(m3 ) + 1 = 2⌈m3 ⌉+ 1.
Case 3 : m ≡ 1(mod 3).

Consider the pair wise disjoint subgraphs as A,D2, E2, D5, E5, . . . , Dm−2, Em−2, then∑
γPi

= 2(m−1
3 ) + 1 = 2⌈m3 ⌉ − 1.

□

Lemma 2.3. For an even cycle Cn, γP (µm(Cn)) ≤

{
2⌈m3 ⌉+ 1, if m ≡ 0(mod 3)

2⌈m3 ⌉, if m ≡ 2 or 1(mod 3)
.

Proof. To prove this, we provide a power dominating set, S, of required cardinality. If
m ≡ 0(mod 3) let S =

{
r, c01, c

0
2, c

4
1, c

4
2, . . . , c

m−2
1 , cm−2

2

}
and if m ≡ 1 or 2(mod 3) then let

S =
{
c01, c

0
2, c

4
1, c

4
2, . . . , c

m−1
1 , cm−1

2

}
. In each case, S power dominate µm(Cn). □

Lemma 2.4. Let S be a power dominating set of µm(Cn), n is even. Then | N [V i]∩ S |≥ 2, 1 ≤
i < m.

Proof. From Lemma 2.1, | N [V i] ∩ S |≥ 1, 1 ≤ i ≤ m. If possible let | N [V i] ∩ S |= 1, 1 ≤
i < m and if N [V i] ∩ S = {v} , we have two cases:
Case 1: v ∈ V i. That is v = cij , 1 ≤ j ≤ n. Then the vertex cij+1 or cij−1 is not monitored.
Case 2: v ∈ V i+1 or V i+1. Suppose v ∈ V i+1. That is v = ci+1

j , 1 ≤ j ≤ n. Then the vertex
cij is not monitored. Similarly, if v ∈ V i−1, cij is not monitored. □

Corollary 2.2. Let S be a power dominating set of µm(Cn), n is even. Then
| S ∩

(
V i ∪ V i+1 ∪ V i+2

)
|≥ 2, 0 ≤ i < m− 2. □

Remark 2.1. Using the same arguments in the proof of Lemma 2.4, we get the following
results. Let S ⊆ V (Cn), n is even.

• If S ∩ {r} = ∅. Then, |S ∩N [V m]| ≥ 2.
• If S ∩ V 0 = ∅. Then, |S ∩N [V 0]| ≥ 2.

Theorem 2.8. For an even cycle, Cn,

γP (µm(Cn)) =

{
2⌈m3 ⌉, if m ≡ 1 or 2(mod 3)

2⌈m3 ⌉+ 1, if m ≡ 0(mod 3)
.

Proof. If m ̸≡ 1(mod 3), the result follows from Lemmas 2.2 and 2.3. Now suppose,
m ≡ 1(mod 3). Consider a set S ⊆ V (µm(Cn)) with cardinality 2⌈m3 ⌉ − 1. Then we
may arrange these vertices so that it satisfy the conditions in Lemmas 2.1 and 2.4, as fol-
lows:
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i. Selecting exactly one vertex from each of the twin sets:
V 0, V 2, V 3, . . . , V 3k, V 3k+2, . . . , V m−1. But here, S ∩ {r} = ∅ and |S ∩N [V m]| = 1.
Thus by Remark 2.1, V m is not fully monitored.

ii. Selecting exactly one vertex from each of the twin sets:
V 1, V 2, V 4, . . . , V 3k+1, V 3k+2, . . . , V m. But here, S ∩ V 0 = ∅ and |S ∩ N [V 0]| = 1.
Thus, by Remark 2.1, V 0 is not fully monitored.

In either way, a set with cardinality 2⌈m3 ⌉−1 cannot be a PDS. Which gives, γP (µm(Cn)) ≥
2⌈m3 ⌉. Then by Lemma 2.3, γP (µm(Cn)) = 2⌈m3 ⌉, if m ≡ 1(mod 3). □

Now, we consider odd cycles Cn, n ≥ 3. First let m > 1 and n = 3.

Theorem 2.9. The power domination number of m-Mycielskian of C3 is

γP (µm(C3)) =

{
m, if m = 2

⌈m+1
3 ⌉, otherwise

.

Proof. For m = 2, suppose that γP (µ2(C3)) = 1 and S = {x} be a γP -set. Then by Lemma
2.1, the vertex x must be from V 1. But M(x) = N [x] ⊂ V. Thus S cannot be PDS and
γP > 1. Now, let S =

{
c11, r

}
. Then every vertex is monitored either by domination or

propagation from S. Thus γP = 2.
Now, let m > 2. We produce a power dominating set that has cardinality ⌈m+1

3 ⌉.
Case 1: m ≡ 0(mod 6), Let S =

{
c01, c

6
1, . . . , c

m
1

}
∪
{
c32, c

9
2, . . . , c

m−3
2

}
.

Case 2: m ≡ 1(mod 6), Let S =
{
c01, c

6
1, . . . , c

m−1
1

}
∪
{
c32, c

9
2, . . . , c

m−4
2

}
.

Case 3: m ≡ 2(mod 6), Let S =
{
c11, c

7
1, . . . , c

m−1
1

}
∪
{
c42, c

10
2 , . . . , cm−4

2

}
.

Case 4: m ≡ 3(mod 6), Let S =
{
c01, c

6
1, . . . , c

m−3
1

}
∪
{
c32, c

9
2, . . . , c

m
2

}
.

Case 5: m ≡ 4(mod 6), Let S =
{
c01, c

6
1, . . . , c

m−4
1

}
∪
{
c32, c

9
2, . . . , c

m−1
2

}
.

Case 6: m ≡ 5(mod 6), Let S =
{
c11, c

7
1, . . . , c

m−4
1

}
∪
{
c42, c

10
2 , . . . , cm−1

2

}
.

In each case S is a PDS of cardinality ⌈m+1
3 ⌉. Then by Corollary 2.1, we have γP (µm(C3)) =

⌈m+1
3 ⌉,m ̸= 2. □

Finally, we consider odd cycles Cn, n > 3 and m > 1.

Lemma 2.5. For the m-Mycielskian of an odd cycle, Cn, γP (µm(Cn)) ≤
⌈
m+2
3

⌉
.

Proof. Here, we produce a power dominating set that has cardinality ⌈m+2
3 ⌉.

Case 1: m ≡ 0(mod 6), S =
{
c01, c

6
1, . . . , c

m
1

}
∪
{
c32, c

9
2, . . . , c

m−3
2

}
.

Case 2: m ≡ 1(mod 6), S =
{
c01, c

6
1, . . . , c

m−1
1

}
∪
{
c32, c

9
2, . . . , c

m−4
2

}
.

Case 3: m ≡ 2(mod 6), S =
{
c11, c

7
1, . . . , c

m−1
1

}
∪
{
c42, c

10
2 , . . . , cm−4

2

}
∪ {r}.

Case 4: m ≡ 3(mod 6), S =
{
c01, c

6
1, . . . , c

m−3
1

}
∪
{
c32, c

9
2, . . . , c

m
2

}
.

Case 5: m ≡ 4(mod 6), S =
{
c01, c

6
1, . . . , c

m−4
1

}
∪
{
c32, c

9
2, . . . , c

m−1
2

}
.

Case 6: m ≡ 5(mod 6), S =
{
c11, c

7
1, . . . , c

m−4
1

}
∪
{
c42, c

10
2 , . . . , cm−1

2

}
∪ {r}.

In each case S is a PDS with cardinality ⌈m+2
3 ⌉. □

Theorem 2.10. For an odd cycle, γP (µm(Cn)) = ⌈m+1
3 ⌉,m ̸≡ 2(mod3).

Proof. By Corollary 2.1 and Lemma 2.5, ⌈m+1
3 ⌉ ≤ γP (µm(Cn)) ≤ ⌈m+2

3 ⌉. But, when m ̸≡
2(mod 3), ⌈m+1

3 ⌉ = ⌈
m+2
3 ⌉. Hence the result. If m ≡ 2(mod 3), ⌈m+1

3 ⌉ ≤ γP (µm(Cn)) ≤
⌈m+2

3 ⌉. □

Theorem 2.11. For an odd cycle, γP (µm(Cn)) = ⌈m+1
3 ⌉,m ≡ 2(mod3) and m ≥ 3n+1

2 .

Proof. The set S =
{
c11, c

4
2, c

7
3, . . . , c

m−1
m+1

3

}
is a power dominating set of µm(Cn), where the

subscripts of element of S is taken modulo n. Then the result follows from Lemma 2.1. □
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3. CONCLUSIONS

The investigation of minimum placement of PMUs led to the power dominating set
problem in graph theory. The problem of finding a network that has a minimum cost of
installation is always relevant in electrical field. The cost of a network is proportional to
the product of degree and diameter. A PMU and its installation also contribute to the
network cost.

Through this study, we have found the power domination number of m-Mycielskian
of cycle, Cn, on n-vertices. For even cycles, γP (µm(Cn)) = 2⌈m3 ⌉ + 1 if m ≡ 0(mod3)
and γP (µm(Cn)) = 2⌈m3 ⌉, otherwise. It is interesting to note that, γP of Mycielskian of
even cycles depends only on the values of m. Now, for odd cycles, if m ≡ 2(mod3)
and m < 3n+1

2 then ⌈m+1
3 ⌉ ≤ γP (µm(Cn)) ≤ ⌈m+2

3 ⌉. For all other cases, γP (µm(Cn)) =

⌈m+1
3 ⌉. Also, the degree of these networks is less than n

m+1 and diameter is at most 2(m+

1) [10]. Compared to other networks which have a less power domination number, m-
Mycielskian of cycles gives a decent structure optimized with the cost-exerting factors. In
addition, the structure is well-connected.
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