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On a Subclass of Meromorphic Functions Defined by a
Differential Operator on Hilbert Space

S. PRATHIBA and T. ROSY

ABSTRACT. In this article, we introduce and study a new subclass of meromorphic functions associated with
a differential operator on Hilbert space. Coefficient estimates, growth and distortion bounds, extreme points,
radii results, convex linear combinations, Hadamard product and integral transforms are obtained.

1. INTRODUCTION

Denote by Σ0 the class of meromorphic functions f of the form

(1.1) f(z) =
1

z
+

∞∑
n=1

anz
n

which are analytic in D = {z ∈ C : 0 < |z| < 1}. The Hadamard product (or convolution)
[5] of functions f ∈ Σ0 given by (1.1) and g ∈ Σ0 of the form

(1.2) g(z) =
1

z
+

∞∑
n=1

bnz
n

is defined by

(1.3) (f ∗ g)(z) = 1

z
+

∞∑
n=1

anbnz
n, z ∈ D .

The function f ∈ Σ0 is said to be meromorphically starlike and meromorphically convex
of order ρ, 0 ≤ ρ < 1 if it satisfies the following conditions :

ℜe
{
−
(
zf ′(z)

f(z)

)}
> ρ and ℜe

{
−
(
1 +

zf ′′(z)

f ′(z)

)}
> ρ, z ∈ D , respectively.

The classes of meromorphically starlike and meromorphically convex functions of order
ρ are denoted by S ∗(ρ) and K (ρ). Moreover the function f ∈ Σ0 is said to be
meromorphically close to convex of order β if there exist a function g ∈ S ∗ such that

ℜe
{
−
(
zf ′(z)

g(z)

)}
> β, (0 ≤ ρ < 1, 0 ≤ β < 1), z ∈ D .

The class of meromorphically close to convex functions of order β is denoted by K0(β, ρ).

Let H be a complex Hilbert space and T be a bounded linear transformation on H. For a
complex analytic function f in a domain E of the complex plane containing the spectrum
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σ(T) of the bounded linear operator T, let f(T) denote the operator on H defined by the
Riesz-Dunford integral [4]

f(T) =
1

2πi

∫
C

(zI− T)−1f(z)dz

where I is the identity operator on H and C is a positively-oriented simple closed
rectifiable contour containing the spectrum σ(T) in the interior domain [6]. The operator
f(T) can also be defined by the following series [7] :

(1.4) f(T) =
∞∑

n=0

f (n)(0)

n!
Tn

which converges in the norm topology.

For f ∈ Σ0, the differential operator introduced by Deniz and Ozkan [3] was defined
as

O0
λf(z) = f(z)

O1
λf(z) = Oλf(z) = λz3(f(z))′′′ + (2λ+ 1)z2(f(z))′′ + zf ′(z)

O2
λf(z) = Oλ(O

1
λf(z))

.

.

.

Om
λ f(z) = Oλ(O

m−1
λ f(z))

where λ ≥ 0 and m ∈ N0 = N ∪ {0}.
For f given by (1.1), and from the definition of the operator Om

λ f(z), we have

(1.5) Om
λ f(z) =

1

z
+

∞∑
n=1

Ψm(λ, n)anz
n

where

(1.6) Ψm(λ, n) = n2m[λ(n− 1) + 1]m.

Definition 1.1. A function f of the form (1.1) is said to be in the class Tm(α, µ, λ,T) if

(1.7) ∥T(Om
λ f(T)′ − {(µ− 1)Om

λ f(T) + µT(Om
λ f(T))′}∥ <

∥T(Om
λ f(T))′ + (1− 2α){(µ− 1)Om

λ f(T) + µT(Om
λ f(T))′}∥

for 0 ≤ α < 1, 0 ≤ µ < 1, and all operators T with ∥T∥ < 1 and ∥T∥ ≠ O, where O denotes
the zero operator on H.

Many authors [8, 10, 12, 13] have defined and studied subclasses of analytic and
meromorphic functions on the unit disk using Hilbert space operators. A new subclass
of analytic univalent functions using subordination was studied by Srivastava et.al. [15].
Generalization of results in this direction with the introduction of various operators were
carried out by various researchers [1, 2, 11, 14, 16]. This resulted in the introduction of
a subclass of meromorphic functions Tm(α, µ, λ,T) defined using Hilbert space operator
and have obtained the necessary and sufficient condition for the functions to belong to this
class, the distortion theorem, radii results, integral transforms and Hadamard product for
the functions in this class are examined. This class appears to be of significant with the
introduction of the Deniz and Ozkan operator to study the various results examined.
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2. COEFFICIENT BOUNDS

Theorem 2.1. A function f of the form (1.1) belongs to the class Tm(α, µ, λ,T) if and only if

(2.8)
∞∑

n=1

[n+ α− αµ(n+ 1)]Ψm(λ, n)an ≤ 1− α.

The result is sharp for the function

(2.9) f(z) =
1

z
+

1− α

[n+ α− αµ(n+ 1)]Ψm(λ, n)
zn.

Proof. Let f(T) = T−1 +
∑∞

n=1 anTn. Assume that (2.8) holds. Then

∥T(Om
λ f(T)′ − {(µ− 1)Om

λ f(T) + µT(Om
λ f(T))′}∥ <

∥T(Om
λ f(T))′ + (1− 2α){(µ− 1)Om

λ f(T) + µT(Om
λ f(T))′}∥

=

∥∥∥∥∥
∞∑

n=1

[(n+ 1)− µ(n+ 1)]Ψm(λ, n)anTn

∥∥∥∥∥−
∥∥2T−1(1− α)−

∞∑
n=1

[n+ (1− 2α)(µ− 1) + µ(1− 2α)n]Ψm(λ, n)anTn

∥∥∥∥∥
≤

∞∑
n=1

[n+ α− αµ(n+ 1)]Ψm(λ, n)an − (1− α) ≤ 0, by (2.8),

Hence f ∈ Tm(α, µ, λ,T).

Conversely, let

∥T(Om
λ f(T)′ − {(µ− 1)Om

λ f(T) + µT(Om
λ f(T))′}∥ <

∥T(Om
λ f(T))′ + (1− 2α){(µ− 1)Om

λ f(T) + µT(Om
λ f(T))′}∥.

⇒

∥∥∥∥∥
∞∑

n=1

[(n+ 1)(1− µ)]Ψm(λ, n)anTn+1

∥∥∥∥∥
≤

∥∥∥∥∥2(1− α)−
∞∑

n=1

[n+ (1− 2α)(µ− 1) + µ(1− 2α)n]Ψm(λ, n)anTn+1

∥∥∥∥∥ .
Choosing T = eI, (0 < e < 1) we get∑∞

n=1[(n+ 1)(1− µ)]Ψm(λ, n)ane
n+1

2(1− α)−
∑∞

n=1[n+ (1− 2α)(µ− 1) + µ(1− 2α)n]Ψm(λ, n)anen+1
< 1.

Letting e → 1 in the above inequality, we obtain (2.8). □

Corollary 2.1. If f of the form (1.1) is in the class Tm(α, µ, λ,T) then

an ≤ 1− α

[n+ α− αµ(n+ 1)]Ψm(λ, n)
, (n ≥ 1)

The result is sharp for the function

f(z) =
1

z
+

1− α

[n+ α− αµ(n+ 1)]Ψm(λ, n)
zn.
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3. GROWTH AND DISTORTION BOUNDS

Theorem 3.2. If f of the form (1.1) is in the class Tm(α, µ, λ,T) then

∥f(T)∥ ≥ 1

∥T∥
− 1− α

(1 + α− 2αµ)Ψm(λ, 1)
∥T∥

and
∥f(T)∥ ≤ 1

∥T∥
+

1− α

(1 + α− 2αµ)Ψm(λ, 1)
∥T∥.

The result is sharp for

f(z) =
1

z
+

1− α

[1 + α− 2αµ]Ψm(λ, 1)
z·

Proof. By Theorem(2.1), we have

(1 + α− 2αµ)Ψm(λ, 1)

∞∑
n=2

an ≤
∞∑

n=1

(n+ α− αµ(n+ 1))Ψm(λ, n)an ≤ 1− α.

Therefore

(3.10)
∞∑

n=1

an ≤ 1− α

(1 + α− 2αµ)Ψm(λ, 1)

Also, f(T) = T−1 +
∑∞

n=1 anTn, then

(3.11)
1

∥T∥
−

∞∑
n=1

an∥T∥n ≤ ∥f(T)∥ ≤ 1

∥T∥
+

∞∑
n=1

an∥T∥n.

Since ∥T∥ < 1, the above inequality becomes

(3.12)
1

∥T∥
− ∥T∥

∞∑
n=1

an ≤ ∥f(T)∥ ≤ 1

∥T∥
+ ∥T∥

∞∑
n=1

an·

Using (3.10) we get the result. □

Theorem 3.3. If f of the form (1.1) is in the class Tm(α, µ, λ,T) then

∥f ′(T)∥ ≥ 1

∥T∥2
− 1− α

(1 + α− 2αµ)Ψm(λ, 1)

and
∥f ′(T)∥ ≤ 1

∥T∥2
+

1− α

(1 + α− 2αµ)Ψm(λ, 1)
·

The result is sharp for

f(z) =
1

z
+

1− α

[1 + α− 2αµ]Ψm(λ, 1)
z·

4. EXTREME POINTS

Theorem 4.4. Let f0(z) =
1

z
and

fn(z) =
1

z
+

1− α

[n+ α− αµ(n+ 1)]Ψm(λ, n)
zn, (n ≥ 1)

0 ≤ α < 1, 0 ≤ µ < 1. Then f ∈ Tm(α, µ, λ,T) if and only if it can be expressed as

f(z) =
∑∞

n=0 µnfn(z) where µn ≥ 0, (n = 0, 1, 2, . . . ) and
∑∞

n=0 µn = 1.
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Proof. Assume that

f(z) =

∞∑
n=0

µnfn(z) =
1

z
+

∞∑
n=1

µn

[
(1− α)

(n+ α− αµ(n+ 1))Ψm(λ, n)

]
zn.

Then

∞∑
n=1

[n+ α− αµ(n+ 1)]Ψm(λ, n)× µn(1− α)

(n+ α− αµ(n+ 1))Ψm(λ, n)

=
∑∞

n=1 µn = 1− µ0 ≤ 1.

By Theorem (2.1), f ∈ Tm(α, µ, λ,T).

Conversely assume that f is in the class Tm(α, µ, λ,T) then by Corollary (2.1),

an ≤ 1− α

(n+ α− αµ(n+ 1))Ψm(λ, n)
·

Set

µn =
(n+ α− αµ(n+ 1))Ψm(λ, n)

1− α
an, n = 1, 2, ...

and µ0 = 1−
∑∞

n=1 µn. Then f(z) =
∑∞

n=0 µnfn(z) ∈ Tm(α, µ, λ,T). □

5. RADII RESULTS

Theorem 5.5. Let f ∈ Tm(α, µ, λ,T). Then f is meromorphically close-to-convex of order δ,
(0 ≤ δ < 1) in the disc |z| < r1, where

r1 := infn≥1

[
(1− δ)[n+ α− αµ(n+ 1)]Ψm(λ, n)

n(1− α)

] 1
n+1

·

The result is sharp for the extremal function given by (2.9).

Proof. It suffices to show that

(5.13) ∥f ′(T)T2 + 1∥ < 1− δ.

By Theorem (2.1),
∞∑

n=1

[n+ α− αµ(n+ 1)]Ψm(λ, n)

1− α
an ≤ 1.

The inequality

∥f ′(T)T2 + 1∥ =

∥∥∥∥∥
∞∑

n=1

nanTn+1

∥∥∥∥∥ ≤
∞∑

n=1

nan∥T∥n+1 < 1− δ.

holds true if
n∥T∥n+1

1− δ
≤ [n+ α− αµ(n+ 1)]Ψm(λ, n)

1− α

Then

∥T∥n+1 ≤ (1− δ)[n+ α− αµ(n+ 1)]Ψm(λ, n)

n(1− α)
, n ≥ 1

which yields the close-to-convexity of the function and completes the proof. □
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Theorem 5.6. Let f ∈ Tm(α, µ, λ,T). Then f is meromorphically starlike of order δ, (0 ≤ δ < 1)
in the disc |z| < r2, where

r2 := infn≥1

[
(1− δ)[n+ α− αµ(n+ 1)]Ψm(λ, n)

(1− α)(n+ 2− δ)

] 1
n+1

·

The result is sharp for the extremal function (2.9).

Proof. Let f(T) = T−1 +
∑∞

n=1 anTn. Since f in Tm(α, µ, λ,T) is meromorphically starlike
of order δ

(5.14)
∥∥∥∥−Tf ′(T)

f(T)
− 1

∥∥∥∥ ≤ 1− δ.

Substituting for f , in the above inequality,

(5.15)
∞∑

n=1

(
n+ 2− δ

1− δ

)
∥T∥n+1an ≤ 1.

By Theorem(2.1),
∞∑

n=1

[n+ α− αµ(n+ 1)]Ψm(λ, n)

1− α
an ≤ 1.

Hence (5.15) holds true if(
n+ 2− δ

1− δ

)
∥T∥n+1 ≤ [n+ α− αµ(n+ 1)]Ψm(λ, n)

1− α
·

That is

∥T∥ ≤
[
(1− δ)[n+ α− αµ(n+ 1)]Ψm(λ, n)

(1− α)(n+ 2− δ)

] 1
n+1

.

□

Theorem 5.7. Let f ∈ Tm(α, µ, λ,T). Then f is meromorphically convex of order δ, (0 ≤ δ < 1)
in the disc |z| < r3, where

r3 := infn≥1

[
(1− δ)[n+ α− αµ(n+ 1)]Ψm(λ, n)

(1− α)n(n+ 2− δ)

] 1
n+1

.

The result is sharp for the extremal function (2.9).

Proof. The proof of the result is akin to Theorem (5.5), hence omitted. □

6. CONVEX COMBINATION

Theorem 6.8. The class Tm(α, µ, λ,T) is closed under convex combination.

Proof. Let f(T) = 1
T+

∑∞
n=0 anTn and g(T) = 1

T+
∑∞

n=0 bnTn be in the class Tm(α, µ, λ,T),

then by Theorem (2.1),
∞∑

n=1

[n+ α− αµ(n+ 1)]Ψm(λ, n)an ≤ 1− α.

and
∞∑

n=1

[n+ α− αµ(n+ 1)]Ψm(λ, n)bn ≤ 1− α.

For 0 ≤ η ≤ 1, we define the function h as h(T) = ηf(T) + (1− η)g(T), then
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h(T) = T−1 +
∑∞

n=1[ηan + (1− η)bn]Tn.

Now we obtain

∞∑
n=1

[n+ α− αµ(n+ 1)]Ψm(λ, n)[ηan + (1− η)bn]

= η

∞∑
n=1

[n+ α− αµ(n+ 1)]Ψm(λ, n)an + (1− η)

∞∑
n=1

[n+ α− αµ(n+ 1)]Ψm(λ, n)bn

≤ η(1− α) + (1− η)(1− α) = 1− α.

Hence h ∈ Tm(α, µ, λ,T). □

7. INTEGRAL TRANSFORMS

We examine integral transforms of functions in the class Tm(α, µ, λ,T) of the type
considered by Goel and Sohi [9].

Theorem 7.9. Let the function f given by (1.1) be in the class Tm(α, µ, λ,T), then

F (z) = κ

∫ 1

0

uκf(uz)du, 0 < u ≤ 1, 0 < κ < ∞.

is in Tm(I, µ, λ,T) when

I = 1− (1− α)(1 + 2µ) + κ

(1 + α− 2αµ)(κ+ 2) + (1− α)(1− 2µ)κ
·

The result is sharp for the function

f(z) =
1

z
+

(1− α)

(1 + α− 2αµ)Ψm(λ, 1)
z·

Proof. Let f ∈ Tm(α, µ, λ,T). Then

F (z) = κ

∫ 1

0

uκf(uz)du =
1

z
+

∞∑
n=1

κ

κ+ n+ 1
anz

n.

We show that

(7.16)
∞∑

n=1

[
κ(n+ I − Iµ(n+ 1))Ψm(λ, n)

(1− I)(κ+ n+ 1)

]
an ≤ 1.

Since f ∈ Tm(α, µ, λ,T), we have
∞∑

n=1

[
(n+ α− αµ(n+ 1))Ψm(λ, n)

(1− α)

]
an ≤ 1.

The inequality (7.16) satisfies if

κ(n+ I − Iµ(n+ 1))

(1− I)(κ+ n+ 1)
≤ (n+ α− αµ(n+ 1))

(1− α)
·

we get

I ≤ [n+ α− αµ(n+ 1)](κ+ n+ 1)− (1− α)κn

[n+ α− αµ(n+ 1)](κ+ n+ 1) + κ(1− α)(1− µ(n+ 1))

= 1− (1− α)(1 + µ(n+ 1) + κn)

[n+ α− αµ(n+ 1)](κ+ n+ 1) + κ(1− α)(1− µ(n+ 1))
·
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We show that the function

φ(n) = 1− (1− α)(1 + µ(n+ 1) + κn)

[n+ α− αµ(n+ 1)](κ+ n+ 1) + κ(1− α)(1− µ(n+ 1))

is an increasing function of n (n ≥ 1) and φ(n) ≥ φ(1). The desired result is thus attained.
□

8. HADAMARD PRODUCT

Theorem 8.10. If f, g ∈ Tm(α, µ, λ,T) then the Hadamard product f ∗g ∈ Tm(I, µ, λ,T) where

(8.17) I = 1− (1− α)2(n+ 1)(1− µ)

(1− α)2(1− µ(n+ 1)) + (n+ α− αµ(n+ 1))2)Ψm(λ, n)
·

Proof. By hypothesis of Theorem (2.1) we have

(8.18)
∞∑

n=1

[n+ α− αµ(n+ 1)]Ψm(λ, n)

1− α
an ≤ 1

and

(8.19)
∞∑

n=1

[n+ α− αµ(n+ 1)]Ψm(λ, n)

1− α
bn ≤ 1.

We find the largest I such that

(8.20)
∞∑

n=1

[n+ I − Iµ(n+ 1)]Ψm(λ, n)

1− I
anbn ≤ 1.

From (8.18) and (8.19), by using Cauchy-Schwarz inequality we find that

(8.21)
∞∑

n=1

[n+ α− αµ(n+ 1)]Ψm(λ, n)

1− α

√
anbn ≤ 1.

We want to show that
[n+ I − Iµ(n+ 1)]Ψm(λ, n)

1− I
anbn ≤ [n+ α− αµ(n+ 1)]Ψm(λ, n)

1− α

√
anbn·

(8.22) ⇒
√
anbn ≤ (1− I)[n+ α− αµ(n+ 1)]

(1− α)[n+ I − Iµ(n+ 1)]
·

Furthermore, from (8.21) we have

(8.23)
√
anbn ≤ 1− α

[n+ α− αµ(n+ 1)]Ψm(λ, n)
·

Thus from (8.22) and (8.23), we show that

1− α

[n+ α− αµ(n+ 1)]Ψm(λ, n)
≤ (1− I)[n+ α− αµ(n+ 1)]

(1− α)[n+ I − Iµ(n+ 1)]

which results in

I ≤ [n+ α− αµ(n+ 1)]2Ψm(λ, n)− n(1− α)2

[n+ α− αµ(n+ 1)]2Ψm(λ, n) + (1− α)2[1− µ(n+ 1)]
= φ(n).

It is seen that φ(n) is an increasing function of n (n ≥ 1). This proves the assertion on
letting n=1. □
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Theorem 8.11. Let the functions f, g ∈ Tm(α, µ, λ,T). Then the function

q(z) =
1

z
+
∑∞

n=1(a
2
n + b2n)z

n ∈ Tm(α, µ, λ,T) where

I ≤ 1− 2(1− α)2Ψm(λ, n)[1− µ(n+ 1) + n]

{[n+ α− αµ(n+ 1)]Ψm(λ, n)}2 + 2(1− α)2Ψm(λ, n)[1− µ(n+ 1)]
·

Proof. If f, g ∈ Tm(α, µ, λ,T), then

(8.24)
∞∑

n=1

[
[n+ α− αµ(n+ 1)]Ψm(λ, n)

1− α
an

]2
≤ 1

and

(8.25)
∞∑

n=1

[
[n+ α− αµ(n+ 1)]Ψm(λ, n)

1− α
bn

]2
≤ 1.

Combining the inequalities (8.24) and (8.25),
∞∑

n=1

1

2

[
[n+ α− αµ(n+ 1)]Ψm(λ, n)

1− α

]2
(a2n + b2n) ≤ 1.

We find the largest I such that

(8.26)
∞∑

n=1

[
[n+ I − Iµ(n+ 1)]Ψm(λ, n)

1− I

]
(a2n + b2n) ≤ 1.

The inequality (8.26) holds if

[n+ I − Iµ(n+ 1)]Ψm(λ, n)

1− I
≤ 1

2

[
[n+ α− αµ(n+ 1)]Ψm(λ, n)

1− α

]2
⇒ I ≤ ([n+ α− αµ(n+ 1)]Ψm(λ, n))2 − 2n(1− α)2Ψm(λ, n)

([n+ α− αµ(n+ 1)]Ψm(λ, n))2 − 2(1− α)2Ψm(λ, n)[1− µ(n+ 1)]

= 1− 2(1− α)2Ψm(λ, n)[1− µ(n+ 1) + n]

([n+ α− αµ(n+ 1)]Ψm(λ, n))2 − 2(1− α)2Ψm(λ, n)[1− µ(n+ 1)]
·

□

9. CONCLUSIONS

The introduced subclass Tm(α, µ, λ,T) on Hilbert Space operator theory had resulted
in the study of necessary and sufficient condition for functions of the form (1.1) to belong
to this class. Distortion theorem, radii results, Integral transforms and Hadamard Product
property were examined. This also gives us the understanding that this study can further
be extended with proper analysis on various other existing operators.
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