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Countably Many Positive Symmetric Solutions For Sturm
Liouville Type Boundary Conditions Of Second Order
Iterative System

K. R. PRASAD and K. BHUSHANAM

ABSTRACT. In this paper we consider second order iterative boundary value problem with Sturm Liouville
type boundary conditions and establish the existence of countably many positive symmetric solutions by using
Krasnoselskii’s fixed point theorem for operator on a cone.

1. INTRODUCTION

Most of the real-world problems in the universe include complex systems with several
degrees of freedom, requiring a set of differential equations under specific assumptions.
Developing a model for complex systems is the first challenge step, followed by investi-
gating the potential solutions. In recent years, much attention has been focused on the
iterative system of nonlinear boundary value problems (BVPs) associated with ordinary
and fractional differential equations, see [1, 3, 11, 14, 20].

Eloe, Henderson and Kosmatov [7] demonstrated the existence of countably positive
solutions for the following boundary value problem

(−1)n−ku(n)(t) = f(u(t)), 0 < t < 1,

u(i)(0) = 0, i = 0, 1, · · · , k − 1,

u(j)(1) = 0, j = 0, 1, · · · , n− k − 1,

where n ≥ 2, and k ∈ {1, · · · , n− 1}.
In 2011, Sun [19] considered second order two-point BVP

u′′(t) + g(t)f(t, u(t)) = 0, t ∈ [0, 1],

u(0) = u(1) =

∫ 1

0

m(s)u(s)ds,

and established the existence of three symmetric positive solutions by using Leggett-
Williams fixed point theorem.

Following that, the researchers have studied the existence of positive symmetric solu-
tions, see [2, 6, 13, 15, 17], and countably many positive solutions, see [10, 18, 21, 22].

Inspired by the aforementioned works, in this paper, we consider the second order
iterative BVP with Sturm Liouville type boundary conditions,

(1.1)

{
y′′k(x ) + ψ(x )hk(yk+1(x )) = 0, 1 ⩽ k ⩽ τ, 0 ⩽ x ⩽ ρ,

yτ+1(x ) = y1(x ), 0 ⩽ x ⩽ ρ,
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(1.2)

{
µ1yk(0) = µ2y

′
k(0),

µ1yk(ρ) = −µ2y
′
k(ρ),

where τ ∈ N, ψ(x ) =

z∏
s=1

ψs(x ) ∈ Lps [0, ρ], (ps ⩾ 1), µ1, µ2 are positive constants,

∆ = µ1(µ1ρ + 2µ2), and establish the existence of countably many positive symmetric
solutions by employing the Krasnoselskii’s fixed point theorem.

Definition 1.1. [19] A function y(x ) : [0, ρ] → R is said to be symmetric on [0, ρ] if for any
x ∈ [0, ρ], y(x ) = y(ρ− x ).

Definition 1.2. [19] Let B be a real Banach space. A nonempty closed convex P ⊂ B is
called a cone if it satisfies the following conditions:

(i) r ∈ P, α > 0 =⇒ αr ∈ P .
(ii) r ∈ P, −r ∈ P =⇒ r = 0.

Definition 1.3. [19] Suppose P is a cone in a Banach space B. The map F is a non negative
continuous concave functional on P provided F : P → [0,∞) is continuous and

F(rϑ1 + (1− r)ϑ2) ≥ r F(ϑ1) + (1− r)F(ϑ2)

for all ϑ1, ϑ2 ∈ P and r ∈ [0, 1].

Definition 1.4. [19] An operator is called completely continuous if it is continuous and
maps bounded sets into precompact sets.

Theorem 1.1 (Arzela-Ascoli [5]). A subset A of C([a,b],R) is relatively compact if and only if
it is bounded and equicontinuous.

We assume the following conditions are true in the entire paper
Z1) hk : [0,∞) → [0,∞) is continuous, 1 ⩽ k ⩽ τ.
Z2) ψs ∈ Lps [0, ρ] for 1 ⩽ ps < ∞, ψs is symmetric on [0, ρ], and each ψs does not vanish

identically on any sub interval of [0, ρ]. Further, ∃ αs > 0 ∋ αs < ψs(x ) <∞, a.e. on
[0, ρ], s = 1, 2, · · · , z .

The remaining part of the paper is arranged as follows. In section 2, we construct
Green’s function for the homogeneous BVP corresponding to (1.1)-(1.2) and obtain bounds
for the Green’s function. In section 3, we develop criteria for the existence of countably
many positive symmetric solutions of (1.1)-(1.2) by using Krasnoselskii’s fixed point the-
orem. Finally, we give an example to illustrate our results in section 4.

2. PRELIMINARY FINDINGS

In this section, we determine Green’s function for the homogeneous BVP correspond-
ing to (1.1)-(1.2) and certain lemmas on Green’s function are established. These lemmas
are useful in demonstrating our main findings.

Lemma 2.1. Let ω(x ) ∈ C([0, ρ],R). Then the unique solution of BVP

(2.3) y′′1(x ) + ω(x ) = 0, 0 ⩽ x ⩽ ρ,

(2.4)

{
µ1y1(0) = µ2y

′
1(0),

µ1y1(ρ) = −µ2y
′
1(ρ),

is

(2.5) y1(x ) =

∫ ρ

0

G(x , r)ω(r)dr ,
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in which

(2.6) G(x , r) =
1

∆

{
(µ1r + µ2)(µ1(ρ− x ) + µ2), 0 ⩽ r ⩽ x ⩽ ρ,

(µ1x + µ2)(µ1(ρ− r) + µ2), 0 ⩽ x ⩽ r ⩽ ρ.

Proof. The corresponding integral equation for (2.3) is

y1(x ) = −
∫ x

0

∫ r

0

ω(r1)dr1dr + a1x + a2

= −
∫ x

0

(x − r)ω(r)dr + a1x + a2,

where a1, a2 are constants. By using boundary conditions (2.4), we get

a1 =
1

(µ1ρ+ 2µ2)

∫ ρ

0

(µ1(ρ− r) + µ2)ω(r)dr ,

a2 =
µ2

µ1(µ1ρ+ 2µ2)

∫ ρ

0

(µ1(ρ− r) + µ2)ω(r)dr .

So, we have,

y1(x ) =

∫ x

0

(x − r)ω(r)dr +
x

(µ1ρ+ 2µ2)

∫ ρ

0

(µ1(ρ− r) + µ2)ω(r)dr+

µ2

µ1(µ1ρ+ 2µ2)

∫ ρ

0

(µ1(ρ− r) + µ2)ω(r)dr

=
1

∆

[ ∫ x

0

(µ1r + µ2)(µ1(ρ− x ) + µ2)ω(r)dr +

∫ ρ

x

(µ1x + µ2)(µ1(ρ− r) + µ2)ω(r)dr

]
=

∫ ρ

0

G(x , r)ω(r)dr ,

where G(x , r) is in (2.6). □

Lemma 2.2. For η ∈ (0, ρ/2), let σ(η) = µ1η+µ2

µ1ρ+µ2
, then G(x , r) has the following properties:

i) 0 ⩽ G(x , r) ⩽ G(r , r), ∀ x , r ∈ [0, ρ].
ii) G(x , r) ⩾ σ(η)G(r , r), ∀ x ∈ [η, ρ− η] and r ∈ [0, ρ].

iii) G(ρ− x , ρ− r) = G(x , r), ∀ x , r ∈ [0, ρ].

Proof. We can easily establish the inequality (i). For inequality (ii), let x ∈ [η, ρ− η],
then for 0 ⩽ r ⩽ x ,

G(x , r)

G(r , r)
=
µ1(ρ− x ) + µ2

µ1(ρ− r) + µ2
⩾ σ(η),

and for x ⩽ r ⩽ ρ,
G(x , r)

G(r , r)
=
µ1x + µ2

µ1r + µ2
⩾ σ(η).

Hence, the inequality (ii).
For the inequality (iii), consider

G(ρ− x , ρ− r) =
1

∆

{
(µ1(ρ− r) + µ2)(µ1(ρ− (ρ− x )) + µ2), 0 ⩽ ρ− r ⩽ ρ− x ,

(µ1(ρ− x ) + µ2)(µ1(ρ− (ρ− r)) + µ2), ρ− x ⩽ ρ− r ⩽ ρ,

=
1

∆

{
(µ1(ρ− r) + µ2)(µ1(x ) + µ2), x ⩽ r ⩽ ρ,

(µ1(ρ− x ) + µ2)(µ1(r) + µ2), 0 ⩽ r ⩽ x ,

= G(x , r).
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This completes the proof. □

Lemma 2.3. Let ω(x ) be continuous and symmetric on [0, ρ]. Then the solution y1(x ) of (2.3)-
(2.4) is symmetric on [0, ρ].

Proof. Consider

y1(ρ− x ) =

∫ ρ

0

G(ρ− x , r)ω(r)dr

=

∫ 0

ρ

G(ρ− x , ρ− r)ω(ρ− r)d(ρ− r)

=

∫ ρ

0

G(x , r)ω(r)dr

=y1(x ).

Therefore y1(x ) is symmetric on [0, ρ]. □

Notice that an τ -tuple
(
y1(x ), y2(x ), · · · , yτ (x )

)
is a solution of (1.1)-(1.2) if and only if

yk(x ) =

∫ ρ

0

G(x , r)ψ(r)hk(yk+1(r))dr , x ∈ [0, ρ], 1 ⩽ k ⩽ τ,

yτ+1(x ) =y1(x ), x ∈ [0, ρ],

Equivalently,

y1(x ) =

∫ ρ

0

G(x , r1)ψ(r1)h1

(∫ ρ

0

G(r1, r2)ψ(r2)h2

(∫ ρ

0

G(r2, r3)ψ(r3) · · ·

hτ−1

[ ∫ ρ

0

G(rτ−1, rτ )ψ(rτ )hτ (y1(rτ )drτ

]
· · · dr3

)
dr2

)
dr1.

3. MAIN RESULTS

In this section, we establish the existence of countably many positive symmetric so-
lutions for (1.1)-(1.2) by using Krasnoselskii’s theorem and Hölder’s inequality. Let B ∈
C([0, ρ],R) be a Banach space with norm ∥y∥ = max

x∈[0,ρ]
|y(x )|. For η ∈ (0, ρ2 ), define the

cone P ⊂ B as P =
{
y ∈ B : y(x ) is non negative, concave, symmetric and min

x∈[η,ρ−η]
y(x ) ⩾

σ(η)∥y∥
}
.

For any y1 ∈ P, define an operator F : P → B by

Fy1(x ) =

∫ ρ

0

G(x , r1)ψ(r1)h1

(∫ ρ

0

G(r1, r2)ψ(r2)h2

(∫ ρ

0

G(r2, r3)ψ(r3) · · ·

hτ−1

[ ∫ ρ

0

G(rτ−1, rτ )ψ(rτ )hτ (y1(rτ )drτ

]
· · · dr3

)
dr2

)
dr1.

Lemma 3.4. Assume that (Z1)-(Z2) hold. Then for each η ∈ (0, ρ2 ), F(P) ⊂ P and F : P → P
is completely continuous.
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Proof. From lemma (2.2), G(x , r) ⩾ 0, ∀ x , r ∈ [0, ρ], then (Fy1)(x ) ⩾ 0. Let y1 ∈ P, then

(Fy1)(1− x ) =

∫ ρ

0

G(1− x , r1)ψ(r1)h1

(∫ ρ

0

G(r1, r2)ψ(r2)h2

(∫ ρ

0

G(r2, r3)ψ(r3) · · ·

hτ−1

[ ∫ ρ

0

G(rτ−1, rτ )ψ(rτ )hτ (y1(rτ ))drτ

]
· · · dr3

)
dr2

)
dr1

=

∫ 0

ρ

G(1− x , 1− r1)ψ(1− r1)h1

(∫ ρ

0

G(1− r1, r2)ψ(r2)

h2

(∫ ρ

0

G(r2, r3)ψ(r3) · · ·hτ−1

[ ∫ ρ

0

G(rτ−1, rτ )ψ(rτ )hτ (y1(rτ ))drτ

]
· · · dr3

)
dr2

)
d(1− r1)

=

∫ ρ

0

G(x , r1)ψ(r1)h1

(∫ ρ

0

G(r1, r2)ψ(r2)h2

(∫ ρ

0

G(r2, r3)

ψ(r3) · · ·hτ−1

[ ∫ ρ

0

G(rτ−1, rτ )ψ(rτ )hτ (y1(rτ ))drτ

]
· · · dr3

)
dr2

)
dr1

=(Fy1)(x ).

Hence Fy1 is symmetric on [0, ρ].

Similarly by Lemma 2.2, we obtain

(Fy1)(x ) ⩽
∫ ρ

0

G(r1, r1)ψ(r1)h1

(∫ ρ

0

G(r1, r2)ψ(r2)h2

(∫ ρ

0

G(r2, r3)

ψ(r3) · · ·hτ−1

[ ∫ ρ

0

G(rτ−1, rτ )ψ(rτ )hτ (y1(rτ ))drτ

]
· · · dr3

)
dr2

)
dr1.

So,

∥(Fy1)∥ ⩽
∫ ρ

0

G(r1, r1)ψ(r1)h1

(∫ ρ

0

G(r1, r2)ψ(r2)h2

(∫ ρ

0

G(r2, r3)

ψ(r3) · · ·hτ−1

[ ∫ ρ

0

G(rτ−1, rτ )ψ(rτ )hτ (y1(rτ ))drτ

]
· · · dr3

)
dr2

)
dr1.

Again from Lemma 2.2, we get

min
x∈[η,ρ−η]

{(Fy1)(x )} ⩾ σ(η)

∫ ρ

0

G(r1, r1)ψ(r1)h1

(∫ ρ

0

G(r1, r2)ψ(r2)h2

(∫ ρ

0

G(r2, r3)ψ(r3)

· · ·hτ−1

[ ∫ ρ

0

G(rτ−1, rτ )ψ(rτ )hτ (y1(rτ ))drτ

]
· · · dr3

)
dr2

)
dr1.

By using above two inequalities one can write,

min
x∈[η,ρ−η]

{(Fy1)(x )} ⩾ σ(η)∥(Fy1)∥.

So, Fy1 ∈ P and F(P) ⊂ P. By using Arzela-Ascoli theorem and stranded methods it can
be prove easily F is completely continuous. □

Theorem 3.2. (Hölder’s[11]) . Let f ∈ Lps [0, 1] with ps > 1, for s = 1, 2, · · · , z and
z∑

s=1

1

ps
= 1. Then

z∏
s=1

fs ∈ L1[0, 1] and

∥∥∥∥∥
z∏

s=1

fs

∥∥∥∥∥
1

⩽
z∏

s=1

∥fs∥ps . Further, if f ∈ L1[0, 1] and

g ∈ L∞[0, 1], then fg ∈ L1[0, 1] and ∥fg∥1 ⩽ ∥f∥1∥g∥∞.
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Theorem 3.3. (Krasnoselskii’s[9]). Let P be a cone in a Banach space B and λ1, λ2 are open
sets with 0 ∈ λ1, λ̄1 ⊂ λ2. Let F : P ∩ (λ̄2 \ λ1) → P be completely continuous operator such
that
a) ∥Fx∥ ⩽ ∥x∥, x ∈ P ∩ ∂λ1, and ∥Fx∥ ⩾ ∥x∥, x ∈ P ∩ ∂λ2, or
b) ∥Fx∥ ⩾ ∥x∥, x ∈ P ∩ ∂λ1, and ∥Fx∥ ⩽ ∥x∥, x ∈ P ∩ ∂λ2.
Then F has a fixed point in P ∩ (λ̄2 \ λ1).

We consider the cases for ψs ∈ Lps [0, 1] :

(i)
z∑

s=1

1

ps
< 1, (ii)

z∑
s=1

1

ps
= 1, (iii)

z∑
s=1

1

ps
> 1.

Firstly, we seek countably many positive symmetric solutions for the case
z∑

s=1

1

ps
< 1.

Theorem 3.4. Suppose that (Z1)-(Z2) hold. Let {xℓ}∞ℓ=1 be decreasing sequence with upper bound
ρ/2 and {ηℓ}∞ℓ=1 be a sequence with ηℓ ∈ (xℓ+1, xℓ). Let {Rℓ}∞ℓ=1 and {Mℓ}∞ℓ=1 be such that

Rℓ+1 < σ(ηℓ)Mℓ < Mℓ < QMℓ < Rℓ, ℓ ∈ N,
where

Q = max

{[
σ(η1)

z∏
s=1

αk

∫ ρ−η1

η1

G(r , r)dr

]−1

, 1

}
.

Further assume that hk satisfies
(C1) hk(y) ⩽ O1Rℓ, ∀ x ∈ [0, ρ], 0 ⩽ y ⩽ Rℓ,

where

O1 <

[
∥G∥Lq

z∏
s=1

∥ψs∥Lps
]−1

,

(C2) hk(y) ⩾ QMℓ, ∀ x ∈ [ηℓ, ρ− ηℓ], ηℓMℓ ⩽ y ⩽ Mℓ.

Then (1.1)-(1.2) has countably many positive symmetric solutions
{
(y

[ℓ]
1 , y

[ℓ]
2 , · · · , y

[ℓ]
τ )

}∞
ℓ=1

such
that y[ℓ]k (x ) ⩾ 0 on [0, ρ], k = 1, 2, · · · , τ .

Proof. Let
λ1,ℓ =

{
y ∈ B : ∥y∥ ⩽ Rℓ

}
,

λ2,ℓ =
{
y ∈ B : ∥y∥ ⩽ Mℓ

}
,

be open subsets of B. From the hypothesis we can write

x∗ < xℓ+1 < ηℓ < xℓ <
ρ

2
, ∀ ℓ ∈ N,

where x∗ = limℓ→∞ xℓ. For each ℓ ∈ N, define the cone Pℓ by

Pℓ =
{
y ∈ B : y(x ) is non negative, concave, symmetric and min

x∈[ηℓ,ρ−ηℓ]
y(x ) ⩾ σ(ηℓ)∥y∥

}
.

Let y1 ∈ Pℓ ∩ ∂λ1,ℓ. Then, y1(r) ⩽ Rℓ = ∥y1∥ for all r ∈ [0, ρ]. By (C1) and for rτ−1 ∈ [0, ρ],
we have ∫ ρ

0

G(rτ−1, rτ )ψ(rτ )hτ (y1(rτ ))drτ ⩽
∫ ρ

0

G(rτ , rτ )ψ(rτ )hτ (y1(rτ ))drτ

⩽ O1Rℓ

∫ ρ

0

G(rτ , rτ )ψ(rτ )drτ

⩽ O1Rℓ

∫ ρ

0

G(rτ , rτ )

z∏
s=1

ψs(rτ )drτ .
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From (i), ∃ q > 1 such that
1

q
+

z∑
s=1

1

ps
= 1.

So, ∫ ρ

0

G(rτ−1, rτ )ψ(rτ )hτ (y1(rτ ))drτ ⩽ O1Rℓ∥G∥Lq
∥∥∥∥∥

z∏
s=1

ψs

∥∥∥∥∥
Lps

⩽ O1Rℓ∥G∥Lq
z∏

s=1

∥ψs∥Lps

⩽ Rℓ.

Similarly for rτ−2 ∈ [0, ρ]

∫ ρ

0

G(rτ−2, rτ−1)ψ(rτ−1)hτ−1

[ ∫ ρ

0

G(rτ−1, rτ )ψ(rτ )hτ (y1(rn))drτ

]
drτ−1

⩽
∫ ρ

0

G(rτ−2, rτ−1)ψ(rτ−1)hτ−1(Rℓ)drτ−1

⩽
∫ ρ

0

G(rτ−1, rτ−1)ψ(rτ−1)hτ−1(Rℓ)drτ−1

⩽ O1Rℓ

∫ ρ

0

G(rτ−1, rτ−1)ψ(rτ−1)drτ−1

⩽ O1Rℓ

∫ ρ

0

G(rτ−1, rτ−1)

z∏
s=1

ψs(rτ−1)drτ−1

⩽ O1Rℓ∥G∥Lq
z∏

s=1

∥ψs∥Lps

⩽ Rℓ.

Continue, we get

(Fy1)(x ) =

∫ ρ

0

G(x , r1)ψ(r1)h1

(∫ ρ

0

G(r1, r2)ψ(r2)h2

(∫ ρ

0

G(r2, r3)ψ(r3) · · ·

hτ−1

[ ∫ ρ

0

G(rτ−1, rτ )ψ(rτ )hτ (y1(rτ ))drτ

]
· · · dr3

)
dr2

)
dr1

⩽ Rℓ.

Since Rℓ = ∥y1∥ for y1 ∈ Pℓ ∩ ∂λ1,ℓ, we get

(3.7) ∥Fy1∥ ⩽ ∥y1∥.

Let x ∈ [ηℓ, ρ− ηℓ]. Then

Mℓ = ∥y1∥ ⩾ y1(x ) ⩾ min
x∈[ηℓ,ρ−ηℓ]

y1(x ) ⩾ σ(ηℓ)∥y1∥ ⩾ σ(ηℓ)Mℓ.
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By (C2) and for rτ−1 ∈ [ηℓ, ρ− ηℓ], we have∫ ρ

0

G(rτ−1, rτ )ψ(rτ )hτ (y1(rτ ))drτ ⩾ σ(ηℓ)

∫ ρ−ηℓ

ηℓ

G(rτ , rτ )ψ(rτ )hτ (y1(rτ ))drτ

⩾ σ(ηℓ)Q Mℓ

∫ ρ−ηℓ

ηℓ

G(rτ , rτ )ψ(rτ )drτ

⩾ σ(ηℓ)Q Mℓ

∫ ρ−ηℓ

ηℓ

G(rτ , rτ )

z∏
s=1

ψs(rτ )drτ

⩾ σ(η1)Q Mℓ

z∏
s=1

αs

∫ ρ−η1

η1

G(rτ , rτ )drτ

⩾ Mℓ.

Then,

(Fy1)(x ) =

∫ ρ

0

G(x , r1)ψ(r1)h1

(∫ ρ

0

G(r1, r2)ψ(r2)h2

(∫ ρ

0

G(r2, r3)ψ(r3) · · ·

hτ−1

[ ∫ ρ

0

G(rτ−1, rτ )ψ(rτ )hτ (y1(rτ ))drτ

]
· · · dr3

)
dr2

)
dr1

⩾Mℓ.

Thus if y1 ∈ Pℓ ∩ ∂λ2,ℓ, then

(3.8) ∥Fy1∥ ⩾ ∥y1∥.

It is evident that 0 ∈ ∂λ2,ℓ ⊂ ∂λ̄2,ℓ ⊂ ∂λ1,ℓ. From (3.7), (3.8), by Theorem 3.3, F has a fixed
point y[ℓ]1 ∈ Pℓ ∩ (λ̄1,ℓ \ λ2,ℓ) ∋ y

[ℓ]
1 (x ) ⩾ 0 on [0, ρ]. Next setting yτ+1 = y1, we obtain

countably many positive symmetric solutions
{
(y

[ℓ]
1 , y

[ℓ]
2 , · · · , y

[ℓ]
τ )

}∞
ℓ=1

of (1.1)-(1.2) given
by

yk(x ) =

∫ ρ

0

G(x , r)ψ(r)hk(yk+1(r))dr , x ∈ [0, ρ], 1 ⩽ k ⩽ τ.

The proof is completed. □

For
z∑

s=1

1

ps
= 1, we have the following theorem.

Theorem 3.5. Suppose that (Z1)-(Z2) hold. Let {xℓ}∞ℓ=1 be a decreasing sequence with upper
bound ρ/2 and {ηℓ}∞ℓ=1 be a sequence with ηℓ ∈ (xℓ+1, xℓ). Let {Rℓ}∞ℓ=1 and {Mℓ}∞ℓ=1 be such
that

Rℓ+1 < σ(ηℓ)Mℓ < Mℓ < QMℓ < Rℓ, ℓ ∈ N,
where

Q = max

{[
σ(η1)

z∏
s=1

αs

∫ ρ−η1

η1

G(r , r)dr

]−1

, 1

}
.

Further assume that hk satisfies
(C3) hk(y) ⩽ O2Rℓ, ∀ x ∈ [0, ρ], 0 ⩽ y ⩽ Rℓ,

where

O2 < min

{[
∥G∥L∞

z∏
s=1

∥ψs∥Lps
]−1

,Q

}
,

(C4) hk(y) ⩾ QMℓ, ∀ x ∈ [ηℓ, ρ− ηℓ], ηℓMℓ ⩽ y ⩽ Mℓ.



Symmetric Positive Solutions-Iterative BVP 253

Then (1.1)-(1.2) has countably many positive symmetric solutions
{
(y

[ℓ]
1 , y

[ℓ]
2 , · · · , y

[ℓ]
τ )

}∞
ℓ=1

such that
y
[ℓ]
k (x ) ⩾ 0 on [0, ρ], 1 ⩽ k ⩽ τ .

Proof. From the hypothesis we can write

x∗ < xℓ+1 < ηℓ < xℓ <
ρ

2
, ∀ ℓ ∈ N,

where x∗ = limℓ→∞ xℓ. For a fixed ℓ, let λ1,ℓ be as in the proof of Theorem 3.4, and let
y1 ∈ Pℓ ∩ ∂λ1,ℓ. Again

y1(x ) ⩽ Rℓ = ∥y1∥
for all x ∈ [0, ρ]. By (C3) and for rτ−1 ∈ [0, ρ], we have∫ ρ

0

G(rτ−1, rτ )ψ(rτ )hτ (y1(rτ ))drτ ⩽
∫ ρ

0

G(rτ , rτ )ψ(rτ )hτ (y1(rτ ))drτ

⩽ Q2Rℓ

∫ ρ

0

G(rτ , rτ )ψ(rτ )drτ

⩽ Q2Rℓ

∫ ρ

0

G(rτ , rτ )

z∏
s=1

ψs(rτ )drτ

⩽ Q2Rℓ∥G∥L∞
z∏

s=1

∥ψs∥Lps

⩽ Rℓ.

Similarly for rτ−2 ∈ [0, ρ]∫ ρ

0

G(rτ−2, rτ−1)ψ(rτ−1)hτ−1

[ ∫ ρ

0

G(rτ−1, rτ )ψ(rτ )hτ (y1(rη))drτ

]
drτ−1

⩽
∫ ρ

0

G(rτ−2, rτ−1)ψ(rτ−1)hτ−1(Rℓ)drτ−1

⩽
∫ ρ

0

G(rτ−1, rτ−1)ψ(rτ−1)hτ−1(Rℓ)drτ−1

⩽ Q2Rℓ

∫ ρ

0

G(rτ−1, rτ−1)ψ(rτ−1)drτ−1

⩽ Q2Rℓ

∫ ρ

0

G(rτ−1, rτ−1)

z∏
s=1

ψs(rτ−1)drτ−1

⩽ Q2Rℓ∥G∥L∞
z∏

s=1

∥ψs∥Lps

⩽ Rℓ.

Continue, we get

(Fy1)(x ) =

∫ ρ

0

G(x , r1)ψ(r1)h1

(∫ ρ

0

G(r1, r2)ψ(r2)h2

(∫ ρ

0

G(r2, r3)ψ(r3) · · ·

hτ−1

[ ∫ ρ

0

G(rτ−1, rτ )ψ(rτ )hτ (y1(rτ ))drτ

]
· · · dr3

)
dr2

)
dr1

⩽Rℓ.

Since Rℓ = ∥y1∥ for y1 ∈ Pℓ ∩ ∂λ1,ℓ, we get

(3.9) ∥Fy1∥ ⩽ ∥y1∥.
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Now define λ2,ℓ =
{
y1 ∈ B : ∥y1∥ < Mℓ

}
. Let y1 ∈ Pℓ∩∂λ2,ℓ, and let x ∈ [ηℓ, ρ−ηℓ]. Then,

the argument leading to (3.8) can be followed to the present case. Hence, the result. □

Lastly, consider the case
z∑

s=1

1

ps
> 1.

Theorem 3.6. Suppose that (Z1)-(Z2) hold. Let {xℓ}∞ℓ=1 be a decreasing sequence with upper
bound ρ/2 and {ηℓ}∞ℓ=1 be a sequence with ηℓ ∈ (xℓ+1, xℓ). Let {Rℓ}∞ℓ=1 and {Mℓ}∞ℓ=1 be such
that

Rℓ+1 < σ(ηℓ)Mℓ < Mℓ < QMℓ < Rℓ, ℓ ∈ N,

where

Q = max

{[
σ(η1)

z∏
s=1

αs

∫ ρ−η1

η1

G(r , r)dr

]−1

, 1

}
.

Further assume that hk satisfies

(C5) hk(y) ⩽ O3Rℓ, ∀ x ∈ [0, ρ], 0 ⩽ y ⩽ Rℓ,
where

O3 < min

{[
∥G∥L∞

z∏
s=1

∥ψs∥L1
]−1

,Q

}
,

(C6) hk(y) ⩾ QMℓ, ∀ x ∈ [ηℓ, ρ− ηℓ], ηℓMℓ ⩽ y ⩽ Mℓ.

Then (1.1)-(1.2) has countably many positive symmetric solutions
{
(y

[ℓ]
1 , y

[ℓ]
2 , · · · , y

[ℓ]
η )

}∞
ℓ=1

such that
y
[ℓ]
k (x ) ⩾ 0 on [0, ρ], 1 ⩽ k ⩽ τ and l ∈ N.

Proof. The proof is similar to the proof of Theorem 3.5. Therefore, we omit the details here.

□

4. EXAMPLE

In this section, we give an example to illustrate our main results.
Consider the following BVP

(4.10)

{
y′′k(x ) + ψ(x )hk(yk+1(x )) = 0, 0 ⩽ x ⩽ 1, k = 1, 2,

y3(x ) = y1(x ), 0 ⩽ x ⩽ 1,

(4.11)

{
yk(0) = 2 y′k(0),

yk(1) = −2 y′k(1),

where

ψ(x ) = ψ1(x )ψ2(x )

in which ψ1(x ) =
1

[|x − 1
2 |+

2
3 ]

1
2

and ψ2(x ) =
1

[|x − 1
2 |+

1
11 ]

1
2
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h1(y) = h2(y) =



2

21
× 10−11, y ∈ (10−11,∞),

37× 10−(11ℓ+5) − 2
21 × 10−(11ℓ)

10−(11ℓ+5) − 10−(11ℓ)
(y− 10−(11ℓ)) +

2

21
× 10−(11ℓ),

y ∈ [10−(11ℓ+5), 10−(11ℓ)],

37× 10−(11ℓ+5), y ∈ (
1

5
× 10−(11ℓ+5), 10−(11ℓ+5)),

37× 10−(11ℓ+5) − 2
21 × 10−(11ℓ+7)

1
5 × 10−(11ℓ+5) − 10−(11ℓ+7)

(y− 10−(11ℓ+7)) +
2

21

× 10−(11ℓ+7), y ∈ [10−(11ℓ+7),
1

5
× 10−(11ℓ+5)],

0, y = 0.

Let, xℓ =
23

57
−

ℓ∑
i=1

1

3(i+ 1)6
, ηℓ =

1

2
(xℓ + xℓ+1), ℓ = 1, 2, 3, · · · ,

then,

η1 =
1453

3648
− 1

4374
<

1453

3648
and

xℓ+1 < ηℓ < xℓ, ηℓ >
1

5
, ℓ = 1, 2, 3, · · · .

It is clear that,

x1 =
1453

3648
<

1

2
, xℓ − xℓ+1 =

1

3(ℓ+ 2)6
, ℓ = 1, 2, 3, · · · .

Since
∞∑
i=1

1

i2
=
π2

6
and

∞∑
i=1

1

i6
=

π6

945
, it follows that

x∗ = lim
ℓ→∞

xℓ =
23

57
−

∞∑
i=1

1

3(i+ 1)6
=

14

19
− π6

2835
>

1

5
.

Let ψ1, ψ2 ∈ Lp[0, 1], for 1.1 ⩽ p ⩽ 200. Since 0.9 ⩽ ψ1(x ) ⩽ 1.3, 1.3 ⩽ ψ2(x ) ⩽ 3.4,
0 ⩽ x ⩽ 1. So ∃ αs ∈ R ∋ αs < ψs <∞. Let α1 = α2 = 1/2, then∫ 1−η1

η1

G(r , r)dr =

∫ 1− 1058629
2659392

1058629
2659392

G(r , r)dr = 0.2546792670.

We get

Q =max

{[
σ(η1)

z∏
s=1

αs

∫ 1−η1

η1

G(r , r)dr

]−1

, 1

}
=max{19.64832215, 1}
=19.64832215.

Case 1:

∥G∥Lq =

[ ∫ 1

0

|G(r , r)|qdr
] 1

q

< 1.3, for any q ∈ (1, 2].

Since ψ1, ψ2 ∈ Lp[0, 1], it follows that

0.2104647218 ⩽

[
∥G∥Lq

z∏
s=1

∥ψs∥Lps
]−1

⩽ 0.4114451085.
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Taking O1 = 0.1022008, in addition if we take

Rℓ = 10−11ℓ, Mℓ = 10−(11ℓ+5),

then,

Rℓ+1 = 10−(11ℓ+11) <
1

5
× 10−(11ℓ+5) < ηℓMℓ < Mℓ = 10−(11ℓ+5) < Rℓ = 10−11ℓ,

QMℓ = 19.64832215× 10−(11ℓ+5) < 0.1022008× 10−11ℓ = O1Rℓ, ℓ = 1, 2, 3, · · · ,
and h1, h2 satisfies the following growth conditions,

h1(y) = h2(y) ⩽ O1 Rℓ = 0.1022008× 10−11ℓ, y ∈ [0, 10−11ℓ]

h1(y) = h2(y) ⩾ QMℓ = 19.64832215× 10−(11ℓ+5), y ∈
[
1

5
× 10−(11ℓ+5), 10−(11ℓ+5)

]
for ℓ ∈ N. Hence all the conditions in Theorem 3.4, are satisfied. The BVP (4.10)-(4.11) has
countably many positive symmetric solutions

{
(y

[ℓ]
1 , y

[ℓ]
2 )

}∞
ℓ=1

such that y
[ℓ]
k (x ) ⩾ 0 on

[0, 1], k = 1, 2 and ℓ ∈ N.

Case 2:

0.2341835419 ⩽

[
∥G∥L∞

z∏
s=1

∥ψs∥Lps
]−1

⩽ 0.3889529640.

Taking O2 = 0.1589454 then,

Rℓ+1 = 10−(11ℓ+11) <
1

5
× 10−(11ℓ+5) < ηℓMℓ < Mℓ = 10−(11ℓ+5) < Rℓ = 10−11ℓ,

QMℓ = 19.64832215× 10−(11ℓ+5) < 0.1022008× 10−11ℓ = O2Rℓ, ℓ = 1, 2, 3, · · · ,
and h1, h2 satisfies the following growth conditions,

h1(y) = h2(y) ⩽ O2 Rℓ = 0.1022008× 10−11ℓ, y ∈ [0, 10−11ℓ]

h1(y) = h2(y) ⩾ QMℓ = 19.64832215× 10−(11ℓ+5), y ∈
[
1

5
× 10−(11ℓ+5), 10−(11ℓ+5)

]
for ℓ ∈ N. Hence all the conditions in Theorem 3.5, are satisfied. The BVP (4.10)-(4.11) has
countably many positive symmetric solutions

{
(y

[ℓ]
1 , y

[ℓ]
2 )

}∞
ℓ=1

such that y
[ℓ]
k (x ) ⩾ 0 on

[0, 1], k = 1, 2 and ℓ ∈ N.

Case 3: [
∥G∥L∞

z∏
s=1

∥ψs∥L1
]−1

⩽ 0.4059591736.

Taking O3 = 0.1845561 then,

Rℓ+1 = 10−(11ℓ+11) <
1

5
× 10−(11ℓ+5) < ηℓMℓ < Mℓ = 10−(11ℓ+5) < Rℓ = 10−11ℓ,

QMℓ = 19.64832215× 10−(11ℓ+5) < 0.184556× 10−11ℓ = O3Rℓ, ℓ = 1, 2, 3, · · · ,
and h1, h2 satisfies the following growth conditions,

h1(y) = h2(y) ⩽ O3 Rℓ = 0.184556× 10−11ℓ, y ∈ [0, 10−11ℓ]

h1(y) = h2(y) ⩾ QMℓ = 19.64832215× 10−(11ℓ+5), y ∈
[
1

5
× 10−(11ℓ+5), 10−(11ℓ+5)

]
for ℓ ∈ N. Hence all the conditions in Theorem 3.6, are satisfied. The BVP (4.10)-(4.11) has
countably many positive symmetric solutions

{
(y

[ℓ]
1 , y

[ℓ]
2 )

}∞
ℓ=1

such that y
[ℓ]
k (x ) ⩾ 0 on
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[0, 1], k = 1, 2 and ℓ ∈ N.
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