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On a particular extension of the EV-Theorem

VASILE C ÎRTOAJE and LEONARD GIUGIUC

ABSTRACT. The main aim of the paper is to determine the extreme values of the product P = a1a2 · · · an
under the constraints

∑n
i=1 ai = S and

∑n
i=1

1
ai+1

= S0 for n ≥ 3 nonnegative real numbers a1, a2, . . . , an

and some given constants S and S0. Some interesting applications of our results are provided as well.

1. INTRODUCTION

Let a1, a2, . . . , an (n ≥ 3) be nonnegative real numbers such that
n∑

i=1

ai = fixed,

n∑
i=1

1

ai + 1
= fixed.

If we are interested in finding the minimum and the maximum value of the product

P = a1a2 · · · an,

then we are tempted to use the EV-Theorem (see [1-3]). To do this, the following substitu-
tion is necessary:

1

ai + 1
= xi, ai =

1

xi
− 1, xi ∈ (0, 1], i = 1, 2, . . . , n.

Thus, we need to find the minimum and the maximum value of the product

P =

(
1

x1
− 1

)(
1

x2
− 1

)
· · ·
(

1

xn
− 1

)
for

n∑
i=1

xi = fixed,

n∑
i=1

1

xi
= fixed.

By the EV-Theorem, if f is a real valued function, continue and differentiable on (0, 1),

f(1−) = ±∞ and the joined function g(x) = f ′
(

1√
x

)
is strictly convex for

1√
x

∈ (0, 1),

i.e. for x ∈ (1,∞), then the sum

Sn = f(x1) + f(x2) + · · ·+ f(xn)

attains its maximum (if Sn has a global maximum) for x1 = x2 = · · · = xn−1 ≤ xn, and
its minimum (if Sn has a global minimum) for x1 ≤ x2 = x3 = · · · = xn. In our case, the
function

f(x) = ln

(
1

x
− 1

)
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has

f ′(x) =
−1

x(1− x)
, g(x) = f ′

(
1√
x

)
=

−x√
x− 1

,

g′′(x) =

√
x− 3

4
√
x(
√
x− 1)3

.

Since g is not convex or concave on (1,∞), we cannot apply the EV-Theorem. Another
similar example can be found in [4].

Note that the domain

D =

{
(a1, . . . , an) ∈ Rn

+ :

n∑
i=1

ai = S ≥ 0,

n∑
i=1

1

ai + 1
= S0

}
is a non-empty compact set in Rn

+ if and only if

n2

S + n
≤ S0 ≤ (n− 1)S + n

S + 1
. (*)

The left inequality turns out from the AM-HM inequality, while the right inequality can

be obtained from Karamata’s inequality [5,6] applied to the convex function g(x) =
1

x+ 1
,

x ≥ 0:

g(a1) + g(a2) + · · ·+ g(an) ≤ g(a1 + a2 + · · ·+ an) + g(0) + · · ·+ g(0).

Under the condition (*), there is a unique set (a1, a2, . . . , an) such that a1 ≥ a2 = a3 =
· · · = an ≥ 0,

∑n
i=1 ai = S and

∑n
i=1

1
ai+1 = S0. Also, under the condition

n2

S + n
≤ S0 <

S + n(n− 1)

S + n− 1
, S > 0, (**)

there is a unique set (a1, a2, . . . , an) such that a1 = a2 = · · · = an−1 ≥ an > 0,
∑n

i=1 ai = S
and

∑n
i=1

1
ai+1 = S0. Moreover, for

S + n(n− 1)

S + n− 1
≤ S0 ≤ (n− 1)S + n

S + 1
, S ≥ 0, (***)

there is at least a set (a1, a2, . . . , an) such that an = 0,
∑n

i=1 ai = S and
∑n

i=1
1

ai+1 = S0.

2. MAIN RESULTS

The main results of the paper are given in Theorem 2.1 and Theorem 2.2. To prove
Theorem 2.1, we need Lemma 2.1 and Proposition 2.1 below.

Lemma 2.1. Let a, b, c be nonnegative real numbers such that a ≥ b ≥ c and

a+ b+ c = S > 0,
1

a+ 1
+

1

b+ 1
+

1

c+ 1
= S0,

where S0 ∈ (1, 3) and
9

S + 3
< S0 <

2S + 3

S + 1
. For fixed S and S0, the range of b is an interval

[m,M ] with m < M . In addition, b = m for b = c, and b = M for either a = b or c = 0.

Proof. From
1

a+ 1
+

1

b+ 1
+

1

c+ 1
< 1 + 1 + 1 = 3

we get S0 < 3, by the AM-HM inequality

[(a+ 1) + (b+ 1) + (c+ 1)]

[
1

a+ 1
+

1

b+ 1
+

1

c+ 1

]
≥ 9
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we get S0 ≥ 9

S + 3
, and from Karamata’s inequality

1

a+ 1
+

1

b+ 1
+

1

c+ 1
≤ 1

a+ b+ c+ 1
+

1

0 + 1
+

1

0 + 1
we get

S0 ≤ 2S + 3

S + 1
.

The equalities S0 =
9

S + 3
and S0 =

2S + 3

S + 1
involve a = b = c =

S

3
and S = a > b =

c = 0, respectively. Therefore, in these cases, m = M . Next, according to the statement
conditions, we may consider a and c (a > c) as functions of b. From

a′ + 1 + c′ = 0,
a′

(a+ 1)2
+

1

(b+ 1)2
+

c′

(c+ 1)2
= 0,

we get

a′(b) =
−(b− c)(b+ c+ 2)(a+ 1)2

(a− c)(a+ c+ 2)(b+ 1)2
≤ 0, c′(b) =

−(a− b)(a+ b+ 2)(c+ 1)2

(a− c)(a+ c+ 2)(b+ 1)2
≤ 0.

Let us define the nonnegative functions

f1(b) = b− c(b), f2(b) = a(b)− b, f3(b) = c(b).

Since
f ′
1(b) = 1− c′(b) > 0, f ′

2(b) = a′(b)− 1 < 0, f ′
3(b) = c′(b) ≤ 0,

these functions are strictly increasing, decreasing and decreasing, respectively. The in-
equality f1(b) ≥ 0 (with f1 increasing) involves b ≥ m, where m is a root of the equation
c(b) = b, the inequality f2(b) ≥ 0 (with f2 decreasing) involves b ≤ b2, where b2 is a root
of the equation a(b) = b, and the inequality f3(b) ≥ 0 (with f3 decreasing) involves b ≤ b3,
where b3 is a root of the equation c(b) = 0. Therefore, M = min{b2, b3} and b ∈ [m,M ],
with b = m for b = c, and b = M for either a = b or c = 0. □

Proposition 2.1. Let a1, b1, c1 be fixed nonnegative real numbers,

S = a1 + b1 + c1, S0 =
1

a1 + 1
+

1

b1 + 1
+

1

c1 + 1
,

and let a, b, c be nonnegative real numbers such that a ≥ b ≥ c and

a+ b+ c = S,
1

a+ 1
+

1

b+ 1
+

1

c+ 1
= S0.

For S0 > 1, the product P = abc achieves its maximum for a ≥ b = c, and its minimum for either
a = b ≥ c > 0 or c = 0.

Proof. If S = 0, then a = b = c = 0 and the conclusion follows. Consider further S > 0. As

shown at Lemma 2,1, in the special cases S0 = 3, S0 =
9

S + 3
and S0 =

2S + 3

S + 1
, a single set

(a, b, c) verifies the given equations. This set has respectively a = b = c = 0, a = b = c =
S

3
and S = a > b = c = 0, satisfying the extremum conditions in the statement (b = c and
either a = b or c = 0). Consider further that

S0 < 3, S0 >
9

S + 3
, S0 <

2S + 3

S + 1
,

when b ∈ [m,M ], m < M . Thus, we may consider a and c as functions of b. We will show
that P ′(b) ≤ 0. From

P ′(b) = a′bc+ ac+ abc′
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and the expressions of a′ and c′ determined in the proof of Lemma 2.1, we write the
inequality P ′(b) ≤ 0 as

ab(a− b)(a+ b+ 2)(c+ 1)2 + bc(b− c)(b+ c+ 2)(a+ 1)2 ≥ ac(a− c)(a+ c+ 2)(b+ 1)2.

Replacing a− c with (a− b) + (b− c), the inequality becomes as follows:

a(a− b)A ≥ c(b− c)B,

where
A = b(S + 2− c)(c+ 1)2 − c(S + 2− b)(b+ 1)2,

B = a(S + 2− b)(b+ 1)2 − b(S + 2− a)(a+ 1)2.

Since
A = (S + 2)[b(c+ 1)2 − c(b+ 1)2] + bc[(b+ 1)2 − (c+ 1)2]

= (S + 2)(b− c)(1− bc) + bc(b− c)(S + 2− a) = (b− c)(S + 2− abc)

and
B = (S + 2)[a(b+ 1)2 − b(a+ 1)2] + ab[(a+ 1)2 − (b+ 1)2]

= (S + 2)(a− b)(1− ab) + ab(a− b)(S + 2− c) = (a− b)(S + 2− abc),

we have
a(a− b)A− c(b− c)B = (a− b)(b− c)(a− c)(S + 2− abc).

Thus, we only need to show that S + 2− abc ≥ 0. Indeed, from S0 > 1, we get
1

a+ 1
+

1

b+ 1
+

1

c+ 1
> 1,

which is equivalent to S + 2 − abc > 0. Since P ′(b) ≤ 0, the function P (b) is strictly
decreasing, therefore the product P achieves its maximum for b = m, when a ≥ b = c,
and its minimum for b = M , when either a = b ≥ c or c = 0 (see Lemma 2.1). □

Theorem 2.1. Let c1, c2, . . . , cn (n ≥ 3) be fixed nonnegative real numbers,

S =

n∑
i=1

ci, S0 =

n∑
i=1

1

ci + 1
,

and let a1, a2, . . . , an be nonnegative real numbers such that a1 ≥ a2 ≥ · · · ≥ an and
n∑

i=1

ai = S,

n∑
i=1

1

ai + 1
= S0.

If S0 > 1 for n = 3 and S0 ≥ n− 2 for n ≥ 4, then
(a) the product P = a1a2 · · · an achieves its maximum for a1 ≥ a2 = a3 = · · · = an;
(b) the product P = a1a2 · · · an achieves its minimum for either a1 = a2 = · · · = an−1 ≥

an > 0 or an = 0.

Proof. Since the domain

D =

{
(a1, . . . , an) ∈ Rn

+ :

n∑
i=1

ai = S,

n∑
i=1

1

ai + 1
= S0

}
is a non-empty compact set in Rn

+, the product P achieves its maximum and minimum.
For n = 3, the conclusion follows from Proposition 2.1. For n ≥ 4, we use the contradiction
method.

(a) Assume, for the sake of contradiction, that P achieves its maximum at (b1, b2, . . . , bn)
with b1 ≥ b2 ≥ · · · ≥ bn and b2 > bn. Let x1, x2, xn be nonnegative real numbers such that
x1 ≥ x2 ≥ xn and

x1 + x2 + xn = b1 + b2 + bn,
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1

1 + x1
+

1

1 + x2
+

1

1 + xn
=

1

1 + b1
+

1

1 + b2
+

1

1 + bn
:= S3.

We have

S0 =

n∑
i=1

1

bi + 1
≤ 1

1 + b1
+

1

1 + b2
+

n− 2

1 + bn
≤ S3 + n− 3,

hence
S3 ≥ S0 − n+ 3 ≥ n− 2− n+ 3 = 1.

The equality S3 = 1 holds only if S0 = n − 2 and b3 = b4 = · · · = bn = 0. This is not
possible since it leads to the contradiction

n− 2 =

n∑
i=1

1

bi + 1
=

1

1 + b1
+

1

1 + b2
+ n− 2.

Therefore, we have S3 > 1. According to Proposition 2.1, the product x1x2xn achieves its
maximum for x2 = xn. So, we have x1x2xn > b1b2bn, which contradicts the assumption
that the product achieves its maximum at (b1, b2, . . . , bn).

(b) Assume, for the sake of contradiction, that P achieves its minimum at (b1, b2, . . . , bn)
with b1 ≥ b2 ≥ · · · ≥ bn > 0 and b1 > bn−1. Let x1, xn−1, xn be nonnegative real numbers
such that x1 ≥ xn−1 ≥ xn and

x1 + xn−1 + xn = b1 + bn−1 + bn,

1

1 + x1
+

1

1 + xn−1
+

1

1 + xn
=

1

1 + b1
+

1

1 + bn−1
+

1

1 + bn
:= S3.

We have

S0 =

n∑
i=1

1

bi + 1
≤ 1

1 + b1
+

n− 2

1 + bn−1
+

1

1 + bn
≤ S3 + n− 3,

hence
S3 ≥ S0 − n+ 3 ≥ n− 2− n+ 3 = 1.

The equality S3 = 1 holds only if S0 = n − 2 and b2 = b3 = · · · = bn = 0. This is not
possible since it leads to the contradiction

n− 2 =

n∑
i=1

1

bi + 1
=

1

1 + b1
+ n− 1.

Therefore, we have S3 > 1. According to Proposition 2.1, the product x1xn−1xn achieves
its minimum for x1 = xn−1 > xn > 0 or xn = 0. Thus, we have x1xn−1xn > b1bn−1bn,
which contradicts the assumption that the product achieves its minimum at (b1, b2, . . . , bn).

□

Lemma 2.2. Let a, b, c be nonnegative real numbers such that a ≥ b ≥ c and

a+ b+ c = S,
1

a+ 1
+

1

b+ 1
+

1

c+ 1
= S0,

where S0 < 1 and S0 >
9

S + 3
. For fixed S and S0, the range of b is an interval [m,M ] with

m < M . In addition, b = m for b = c, and b = M for a = b.

Proof. It is not possible to have c = 0 since this involves the contradiction

1 > S0 =
1

a+ 1
+

1

b+ 1
+ 1.
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By the AM-HM inequality

[(a+ 1) + (b+ 1) + (c+ 1)]

[
1

a+ 1
+

1

b+ 1
+

1

c+ 1

]
≥ 9,

we get

S0 ≥ 9

S + 3
.

The equality S0 =
9

S + 3
involves a = b = c =

S

3
, hence m = M . For S0 >

9

S + 3
, we may

consider a and c as functions of b. Furthermore, the proof is identical to that of Lemma
2.1, but without using the function f3(b) (because it cannot decrease to zero). □

Proposition 2.2. Let a1, b1, c1 be fixed nonnegative real numbers,

S = a1 + b1 + c1, S0 =
1

a1 + 1
+

1

b1 + 1
+

1

c1 + 1
,

and let a, b, c be nonnegative real numbers such that a ≥ b ≥ c and

a+ b+ c = S,
1

a+ 1
+

1

b+ 1
+

1

c+ 1
= S0.

For S0 < 1, the product P = abc achieves its maximum for a = b ≥ c, and its minimum for
a ≥ b = c.

Proof. If S = 0, then a = b = c = 0 and the conclusion follows. Consider further S > 0.

As shown at Lemma 2.2, in the special case S0 =
9

S + 3
, the given equations are satisfied

for a = b = c =
S

3
. Consider further that S0 >

9

S + 3
, when a > c and b ∈ [m,M ], m < M .

Thus, we may consider a and c as functions of b. We will show that P ′(b) ≥ 0. As shown
in the proof of Proposition 2.1, this inequality is equivalent to

(a− b)(b− c)(a− c)(S + 2− abc) ≤ 0.

Thus, we only need to show that S + 2− abc ≤ 0. Indeed, from S0 < 1 we get

1

a+ 1
+

1

b+ 1
+

1

c+ 1
< 1,

which is equivalent to S + 2 − abc < 0. Since P ′(b) ≥ 0, the function P (b) is strictly
increasing, therefore the product P achieves its maximum for b = M , when a = b ≥ c,
and its minimum for b = m, when a ≥ b = c (see Lemma 2.2). □

Theorem 2.2. Let c1, c2, . . . , cn (n ≥ 3) be fixed nonnegative real numbers,

S =

n∑
i=1

ci, S0 =

n∑
i=1

1

ci + 1
,

and let a1, a2, . . . , an be nonnegative real numbers such that a1 ≥ a2 ≥ · · · ≥ an and
n∑

i=1

ai = S,

n∑
i=1

1

ai + 1
= S0.

If S0 < 1 for n = 3 and S0 ≤ 1 for n ≥ 4, then
(a) the product P = a1a2 · · · an achieves its maximum for a1 = a2 = · · · = an−1 ≥ an;
(b) the product P = a1a2 · · · an achieves its minimum for a1 ≥ a2 = a3 = · · · = an.



On a particular extension of the EV-Theorem 179

Proof. Since the domain

D =

{
(a1, . . . , an) ∈ Rn

+ :

n∑
i=1

ai = S,

n∑
i=1

1

ai + 1
= S0

}
is a non-empty compact set in Rn

+, the product P achieves its maximum and minimum.
For n = 3, the conclusion turns out from Proposition 2.2. For n ≥ 4, we use the contradic-
tion method.

(a) Assume, for the sake of contradiction, that P has the maximum value for a set
(b1, b2, . . . , bn) with b1 ≥ b2 ≥ · · · ≥ bn and b1 > bn−1, which satisfies the given two
equations. Let x1, xn−1, xn be positive real numbers such that x1 ≥ xn−1 ≥ xn and

x1 + xn−1 + xn = b1 + bn−1 + bn,

1

1 + x1
+

1

1 + xn−1
+

1

1 + xn
=

1

1 + b1
+

1

1 + bn−1
+

1

1 + bn
:= S3.

We have
S3 < S0 ≤ 1.

According to Proposition 2.2, the product x1xn−1xn achieves its maximum for x1 = xn−1.
In this case we have x1xn−1xn > b1bn−1bn, which contradicts the assumption that the
product achieves its minimum at (b1, b2, . . . , bn).

(b) Similarly, we can prove that P achieves its minimum for a1 ≥ a2 = a3 = · · · =
an. □

Remark 2.1. The problem of determining the maximum and minimum value of the prod-
uct P = a1a2 · · · an remains an open one for 1 < S0 < n − 2 (see Theorem 2.1) or
1 < m < n− 2 (see Theorem 2.1’).

Remark 2.2. We may reformulate Theorem 2.1 and Theorem 2.2 as follows:

Theorem 2.1’. Let c1, c2, . . . , cn (n ≥ 3) be fixed nonnegative real numbers such that
n∑

i=1

1

(n−m)ci +m
= 1 ,

where 1 < m ≤ 3 for n = 3 and n− 2 ≤ m ≤ n for n ≥ 4. If a1, a2, . . . , an are nonnegative real
numbers such that a1 ≥ a2 ≥ · · · ≥ an and

n∑
i=1

ai =

n∑
i=1

ci,

n∑
i=1

1

(n−m)ai +m
= 1,

then
(a) the product P = a1a2 · · · an achieves its maximum for a1 ≥ a2 = a3 = · · · = an;
(b) the product P = a1a2 · · · an achieves its minimum for either a1 = a2 = · · · = an−1 ≥

an > 0 or an = 0.

Theorem 2.2’. Let c1, c2, . . . , cn (n ≥ 3) be fixed nonnegative real numbers such that
n∑

i=1

1

(n−m)ci +m
= 1 ,

where 0 < m < 1 for n = 3 and 0 < m ≤ 1 for n ≥ 4. If a1, a2, . . . , an are nonnegative real
numbers such that a1 ≥ a2 ≥ · · · ≥ an and

n∑
i=1

ai =

n∑
i=1

ci,

n∑
i=1

1

(n−m)ai +m
= 1,
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then
(a) the product P = a1a2 · · · an achieves its maximum for a1 = a2 = · · · = an−1 ≥ an;
(b) the product P = a1a2 · · · an achieves its minimum for a1 ≥ a2 = a3 = · · · = an.

3. APPLICATIONS

Application 3.1. If a1, a2, . . . , an (n ≥ 3) are nonnegative real numbers such that
n∑

i=1

1

ai + n− 1
= 1,

then
(n− 2)(a1 + a2 + · · ·+ an) + a1a2 · · · an ≥ (n− 1)2.

Proof. Consider a1 ≥ a2 ≥ · · · ≥ an. According to Theorem 2.1’ (case m = n − 1),
for fixed a1 + a2 + · · · + an, the product a1a2 · · · an has the minimum value for either
a1 = a2 = · · · = an−1 ≥ an > 0 or an = 0. Thus, it suffices to consider these cases.

Case 1: a1 = a2 = · · · = an−1 ≥ an > 0. We need to show that if
n− 1

x+ 1
+

1

y + 1
= 1 ,

which leads to

y =
n− 1− (n− 2)x

x
, 0 < y ≤ x <

n− 1

n− 2
,

then
(n− 2)[(n− 1)x+ y] + xn−1y ≥ (n− 1)2,

which is equivalent to

(n− 2)y + xn−1y ≥ (n− 1)[n− 1− (n− 2)x].

Since n− 1− (n− 2)x = xy, we only need to show that

n− 2 + xn−1 ≥ (n− 1)x,

which is just the AM-GM inequality.
Case 2: an = 0. We need to show that

n−1∑
i=1

1

ai + n− 1
=

n− 2

n− 1

involves
(n− 2)(a1 + a2 + · · ·+ an−1) ≥ (n− 1)2.

This follows immediately from the AM-HM inequality[
n−1∑
i=1

(ai + n− 1)

](
n−1∑
i=1

1

ai + n− 1

)
≥ (n− 1)2.

The proof is completed. The equality occurs for a1 = a2 = · · · = an = 1, and also for

a1 = a2 = · · · = an−1 =
n− 1

n− 2
and an = 0 (or any cyclic permutation).

Application 3.2. If a1, a2, . . . , an (n ≥ 3) are nonnegative real numbers such that
n∑

i=1

1

2ai + n− 2
= 1,
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then
a1 + a2 + · · ·+ an − n ≥ 2n−1(a1a2 · · · an − 1).

Proof. Consider a1 ≥ a2 ≥ · · · ≥ an. For n = 3, the inequality is an identity. For n ≥ 4,
according to Theorem 2.1’ (case m = n − 2), for fixed a1 + a2 + · · · + an, the product
a1a2 · · · an attains its maximum value when a1 ≥ a2 = a3 = · · · = an. Thus, we only need
to show that

y + (n− 1)x− n ≥ 2n−1(yxn−1 − 1)

for
1

2y + n− 2
+

n− 1

2x+ n− 2
= 1 ,

which implies

y =
n− 2− (n− 3)x

2x− 1
,

1

2
< x ≤ y.

The required inequality is equivalent to

n− 2− (n− 3)x+ (2x− 1)[(n− 1)x− n]

2n−1
≥

≥ (n− 2)(xn−1 − 1)− (n− 3)(xn − 1)− 2(x− 1), (*)

or
(n− 1)(x− 1)2

2n−2
≥ (x− 1)f(x),

where

f(x) = (n− 2)(xn−2 + xn−3 + · · ·+ x+ 1)− (n− 3)(xn−1 + xn−2 + · · ·+ x+ 1)− 2

= (n−2)[(xn−2−1)+(xn−3−1)+· · ·+(x−1)]−(n−3)[(xn−1−1)+(xn−2−1)+· · ·+(x−1)]

= (x− 1)g(x),

g(x) = (n− 2)[xn−3 + 2xn−4 + · · ·+ (n− 2)]− (n− 3)[xn−2 + 2xn−3 + · · ·+ (n− 1)]

= −(n− 3)xn−2 − (n− 4)xn−3 − · · · − x2 + 1.

So, we only need to show that
n− 1

2n−2
≥ g(x).

Since g is a decreasing function, it suffices to show that

n− 1

2n−2
≥ g

(
1

2

)
.

This is true if the inequality (*) holds for x =
1

2
. It is easy to show that this last inequality

is an identity.
For n ≥ 4, the equality occurs when a1 = a2 = · · · = an = 1.

Application 3.3. If a1, a2, . . . , an (n ≥ 3) are nonnegative real numbers such that
n∑

i=1

1

(n− 1)ai + 1
= 1,

then

a1 + a2 + · · ·+ an − n ≤ k(a1a2 · · · an − 1), k =

(
n− 1

n− 2

)n−1

.

Proof. Consider a1 ≥ a2 ≥ · · · ≥ an. For n = 3, the inequality is an identity. Consider
further n ≥ 4. According to Theorem 2.2’ (case m = 1), for fixed a1 + a2 + · · · + an, the
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product a1a2 · · · an attains its minimum when a1 ≥ a2 = a3 = · · · = an. We need to show
that if

1

(n− 1)y + 1
+

n− 1

(n− 1)x+ 1
= 1 ,

which leads to
y =

1

(n− 1)x− n+ 2
,

n− 2

n− 1
< x ≤ y,

then
y + (n− 1)x− n ≤ k(yxn−1 − 1),

which is equivalent to

1 + [(n− 1)x− n+ 2][(n− 1)x− n] ≤ k[xn−1 − (n− 1)x+ n− 2], (**)

or
(n− 1)2(x− 1)2 ≤ kf(x), f(x) = xn−1 − 1− (n− 1)(x− 1).

Since
f(x) = (x− 1)(xn−2 + xn−3 + · · ·+ x− n+ 2) = (x− 1)2g(x),

where
g(x) = xn−3 + 2xn−4 + · · ·+ (n− 2),

we only need to show that
(n− 1)2 ≤ kg(x).

Since g is an increasing function, it suffices to show that

(n− 1)2 ≤ kg

(
n− 2

n− 1

)
.

This inequality is true if the inequality (**) holds for x =
n− 2

n− 1
. Indeed, in this case, (**) is

an identity.
For n ≥ 4, the equality occurs when a1 = a2 = · · · = an = 1.

Remark 3.3. By the AM-HM inequality[
n−1∑
i=1

((n− 1)ai + 1)

](
n−1∑
i=1

1

(n− 1)ai + 1

)
≥ n2,

we get a1+a2+ · · ·+an ≥ n. As a consequence, the inequality in Application 3.3 involves

a1a2 · · · an ≥ 1.

Actually, the following stronger inequality holds for n ≥ 4:

a1a2 · · · an ≥ a1 + a2 + · · ·+ an
n

.

Indeed, denoting p = a1a2 · · · an (p ≥ 1 ), the inequality in Application 3.3 leads to

na1a2 · · · an − (a1 + a2 + · · ·+ an) ≥ np− k(p− 1)− n = (n− k)(p− 1) ≥ 0.

Application 3.4. If a1, a2, . . . , an (n ≥ 3) are nonnegative real numbers such that
n∑

i=1

1

(n− 1)ai + 1
= 1.

then
a1 + a2 + · · ·+ an ≥ n n−1

√
a1a2 · · · an.
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Proof. Consider a1 ≥ a2 ≥ · · · ≥ an. If n ≥ 4, we may apply Theorem 2.2’ for m = 1.
So, for fixed a1 + a2 + · · · + an, the product a1a2 · · · an has the maximum value when
a1 ≥ a2 = a3 = · · · = an, and we only need to show that if

n− 1

(n− 1)x+ 1
+

1

(n− 1)y + 1
= 1, x ≤ y,

that is
y =

1

(n− 1)x− n+ 2
, x >

n− 2

n− 1
,

then
(n− 1)x+ y ≥ n n−1

√
xn−1y ,

that is [
(n− 1)x+ y

nx

]n−1

≥ y ,

(
1− x− y

nx

)n−1

≥ y .

By Bernoulli’s inequality, it suffices to show that

1− (n− 1)(x− y)

nx
≥ y ,

which is equivalent to
x ≥ (nx− n+ 1)y,

(n− 1)(x− 1)2 ≥ 0.

For n = 3, we need to show that

a1 + a2 + a3 ≥ 3
√
a1a2a3

for
1

2a1 + 1
+

1

2a2 + 1
+

1

2a3 + 1
= 1,

that is
4a1a2a3 = a1 + a2 + a3 + 1.

Denote t = 3
√
a1a2a3. From AM-GM inequality, we have

4t3 = a1 + a2 + a3 + 1 ≥ 3t+ 1,

hence t ≥ 1. Finally, we get

a1 + a2 + a3 − 3
√
a1a2a3 = 4t3 − 1− 3t

√
t = (t

√
t− 1)(4t

√
t+ 1) ≥ 0.

The equality occurs for a1 = a2 = · · · = an = 1.

Application 3.5. If a, b, c, d are nonnegative real numbers such that
1

a+ 1
+

1

b+ 1
+

1

c+ 1
+

1

d+ 1
= 2

then
(a+ b+ c+ d)2 + 4 ≥ 5(abc+ bcd+ cda+ dab).

Proof. Consider a ≥ b ≥ c ≥ d and write the hypothesis in the form

a+ b+ c+ d+ 2 = abcd+ 2(abc+ bcd+ cda+ dab).

If the sum a+ b+ c+d is fixed, then the expression abc+ bcd+ cda+dab has the maximum
value when the product abcd has the minimum value, that is when either a = b = c ≥ d >
0 or d = 0 (Theorem 2.1). Thus, it suffices to consider these cases.

Case 1: a = b = c ≥ d > 0. We need to prove that

(3a+ d)2 + 4 ≥ 5a2(a+ 3d)



184 Vasile Cı̂rtoaje and Leonard Giugiuc

for
3

a+ 1
+

1

d+ 1
= 2,

that is
d =

2− a

2a− 1
,

1

2
< a ≤ 2.

Write the required inequality as follows:

(3a+ d)2 − 16 ≥ 5(a3 + 3a2d− 4),

12(a− 1)2(a+ 1)(3a− 1)

(2a− 1)2
≥ 10(a− 1)2(a2 + 2)

2a− 1
.

It is true if
6(a+ 1)(3a− 1) ≥ 5(2a− 1)(a2 + 2).

Indeed, we have

6(a+1)(3a−1)−5(2a−1)(a2+2) ≥ 6(a+1)(3a−1)−5(2a−1)(2a+2) = 2(a+1)(2−a) ≥ 0.

Case 2: d = 0. Let s = a+ b+ c. We need to show that

s2 + 4 ≥ 5abc

for
1

a+ 1
+

1

b+ 1
+

1

c+ 1
= 1,

that is abc = s+ 2. From
s3 ≥ 27abc = 27(s+ 2),

we get (s− 6)(s+ 3)2 ≥ 0, hence s ≥ 6. Finally,

s2 + 4− 5abc = s2 + 4− 5(s+ 2) = (s− 6)(s+ 1) ≥ 0.

The equality occurs for a = b = c = d = 1, and also for a = b = c = 2 and d = 0 (or any
cyclic permutation).
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