CREAT. MATH. INFORM. Volume **31** (2022), No. 2, Pages 173 - 184 Online version at https://semnul.com/creative-mathematics/ Print Edition: ISSN 1584 - 286X; Online Edition: ISSN 1843 - 441X DOI: https://doi.org/10.37193/CMI.2022.02.03

On a particular extension of the EV-Theorem

VASILE CÎRTOAJE and LEONARD GIUGIUC

ABSTRACT. The main aim of the paper is to determine the extreme values of the product $P = a_1 a_2 \cdots a_n$ under the constraints $\sum_{i=1}^{n} a_i = S$ and $\sum_{i=1}^{n} \frac{1}{a_i+1} = S_0$ for $n \ge 3$ nonnegative real numbers a_1, a_2, \ldots, a_n and some given constants S and S_0 . Some interesting applications of our results are provided as well.

1. INTRODUCTION

Let a_1, a_2, \ldots, a_n $(n \ge 3)$ be nonnegative real numbers such that

$$\sum_{i=1}^{n} a_i = fixed, \qquad \sum_{i=1}^{n} \frac{1}{a_i + 1} = fixed.$$

If we are interested in finding the minimum and the maximum value of the product

$$P = a_1 a_2 \cdots a_n,$$

then we are tempted to use the EV-Theorem (see [1-3]). To do this, the following substitution is necessary:

$$\frac{1}{a_i+1} = x_i, \quad a_i = \frac{1}{x_i} - 1, \quad x_i \in (0,1], \quad i = 1, 2, \dots, n.$$

Thus, we need to find the minimum and the maximum value of the product

$$P = \left(\frac{1}{x_1} - 1\right) \left(\frac{1}{x_2} - 1\right) \cdots \left(\frac{1}{x_n} - 1\right)$$

for

$$\sum_{i=1}^{n} x_i = fixed, \qquad \sum_{i=1}^{n} \frac{1}{x_i} = fixed.$$

By the EV-Theorem, if f is a real valued function, continue and differentiable on (0, 1), $f(1-) = \pm \infty$ and the joined function $g(x) = f'\left(\frac{1}{\sqrt{x}}\right)$ is strictly convex for $\frac{1}{\sqrt{x}} \in (0, 1)$, i.e. for $x \in (1, \infty)$, then the sum

$$S_n = f(x_1) + f(x_2) + \dots + f(x_n)$$

attains its maximum (if S_n has a global maximum) for $x_1 = x_2 = \cdots = x_{n-1} \le x_n$, and its minimum (if S_n has a global minimum) for $x_1 \le x_2 = x_3 = \cdots = x_n$. In our case, the function

$$f(x) = \ln\left(\frac{1}{x} - 1\right)$$

2000 Mathematics Subject Classification. 26D07, 26D10, 26D15.

Received: 03.01.2022. In revised form: 28.04.2022. Accepted: 05.04.2022

Key words and phrases. EV-Theorem, maximum product, minimum product, fixed sums.

Corresponding author: Vasile Cirtoaj; vcirtoaje@upg-ploiesti.ro

has

$$\begin{aligned} f'(x) &= \frac{-1}{x(1-x)}, \quad g(x) = f'\left(\frac{1}{\sqrt{x}}\right) = \frac{-x}{\sqrt{x-1}}, \\ g''(x) &= \frac{\sqrt{x-3}}{4\sqrt{x}(\sqrt{x-1})^3}. \end{aligned}$$

Since *g* is not convex or concave on $(1, \infty)$, we cannot apply the EV-Theorem. Another similar example can be found in [4].

Note that the domain

$$D = \left\{ (a_1, \dots, a_n) \in \mathbb{R}^n_+ : \sum_{i=1}^n a_i = S \ge 0, \sum_{i=1}^n \frac{1}{a_i + 1} = S_0 \right\}$$

is a non-empty compact set in \mathbb{R}^n_{\perp} if and only if

$$\frac{n^2}{S+n} \le S_0 \le \frac{(n-1)S+n}{S+1}.$$
(*)

The left inequality turns out from the AM-HM inequality, while the right inequality can be obtained from Karamata's inequality [5,6] applied to the convex function $g(x) = \frac{1}{x+1}$, $x \ge 0$:

$$g(a_1) + g(a_2) + \dots + g(a_n) \le g(a_1 + a_2 + \dots + a_n) + g(0) + \dots + g(0).$$

Under the condition (*), there is a unique set (a_1, a_2, \ldots, a_n) such that $a_1 \ge a_2 = a_3 = \cdots = a_n \ge 0$, $\sum_{i=1}^n a_i = S$ and $\sum_{i=1}^n \frac{1}{a_i+1} = S_0$. Also, under the condition

$$\frac{n^2}{S+n} \le S_0 < \frac{S+n(n-1)}{S+n-1}, \quad S > 0, \tag{**}$$

there is a unique set $(a_1, a_2, ..., a_n)$ such that $a_1 = a_2 = \cdots = a_{n-1} \ge a_n > 0$, $\sum_{i=1}^n a_i = S$ and $\sum_{i=1}^n \frac{1}{a_i+1} = S_0$. Moreover, for

$$\frac{S+n(n-1)}{S+n-1} \le S_0 \le \frac{(n-1)S+n}{S+1}, \quad S \ge 0,$$
(***)

there is at least a set (a_1, a_2, \ldots, a_n) such that $a_n = 0$, $\sum_{i=1}^n a_i = S$ and $\sum_{i=1}^n \frac{1}{a_i+1} = S_0$.

2. MAIN RESULTS

The main results of the paper are given in Theorem 2.1 and Theorem 2.2. To prove Theorem 2.1, we need Lemma 2.1 and Proposition 2.1 below.

Lemma 2.1. Let a, b, c be nonnegative real numbers such that $a \ge b \ge c$ and

$$a+b+c=S>0, \quad \frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=S_0,$$

where $S_0 \in (1,3)$ and $\frac{9}{S+3} < S_0 < \frac{2S+3}{S+1}$. For fixed S and S_0 , the range of b is an interval [m, M] with m < M. In addition, b = m for b = c, and b = M for either a = b or c = 0.

Proof. From

$$\frac{1}{a+1} + \frac{1}{b+1} + \frac{1}{c+1} < 1+1+1 = 3$$

we get $S_0 < 3$, by the AM-HM inequality

$$\left[(a+1) + (b+1) + (c+1)\right] \left[\frac{1}{a+1} + \frac{1}{b+1} + \frac{1}{c+1}\right] \ge 9$$

we get $S_0 \ge \frac{9}{S+3}$, and from Karamata's inequality

$$\frac{1}{a+1} + \frac{1}{b+1} + \frac{1}{c+1} \le \frac{1}{a+b+c+1} + \frac{1}{0+1} + \frac{1}{0+1}$$

we get

 $S_0 \leq \frac{2S+3}{S+1}$. The equalities $S_0 = \frac{9}{S+3}$ and $S_0 = \frac{2S+3}{S+1}$ involve $a = b = c = \frac{S}{3}$ and S = a > b = c = 0, respectively. Therefore, in these cases, m = M. Next, according to the statement conditions, we may consider a and c (a > c) as functions of b. From

$$a' + 1 + c' = 0,$$
 $\frac{a'}{(a+1)^2} + \frac{1}{(b+1)^2} + \frac{c'}{(c+1)^2} = 0,$

we get

$$a'(b) = \frac{-(b-c)(b+c+2)(a+1)^2}{(a-c)(a+c+2)(b+1)^2} \le 0, \quad c'(b) = \frac{-(a-b)(a+b+2)(c+1)^2}{(a-c)(a+c+2)(b+1)^2} \le 0.$$

Let us define the nonnegative functions

$$f_1(b) = b - c(b), \quad f_2(b) = a(b) - b, \quad f_3(b) = c(b)$$

Since

$$f'_1(b) = 1 - c'(b) > 0, \quad f'_2(b) = a'(b) - 1 < 0, \quad f'_3(b) = c'(b) \le 0,$$

these functions are strictly increasing, decreasing and decreasing, respectively. The inequality $f_1(b) \ge 0$ (with f_1 increasing) involves $b \ge m$, where m is a root of the equation c(b) = b, the inequality $f_2(b) \ge 0$ (with f_2 decreasing) involves $b \le b_2$, where b_2 is a root of the equation a(b) = b, and the inequality $f_3(b) \ge 0$ (with f_3 decreasing) involves $b \le b_3$, where b_3 is a root of the equation c(b) = 0. Therefore, $M = \min\{b_2, b_3\}$ and $b \in [m, M]$, with b = m for b = c, and b = M for either a = b or c = 0.

Proposition 2.1. Let a_1, b_1, c_1 be fixed nonnegative real numbers,

$$S = a_1 + b_1 + c_1, \quad S_0 = \frac{1}{a_1 + 1} + \frac{1}{b_1 + 1} + \frac{1}{c_1 + 1},$$

and let a, b, c be nonnegative real numbers such that $a \ge b \ge c$ and

$$a+b+c = S$$
, $\frac{1}{a+1} + \frac{1}{b+1} + \frac{1}{c+1} = S_0$.

For $S_0 > 1$, the product P = abc achieves its maximum for $a \ge b = c$, and its minimum for either $a = b \ge c > 0$ or c = 0.

Proof. If S = 0, then a = b = c = 0 and the conclusion follows. Consider further S > 0. As shown at Lemma 2,1, in the special cases $S_0 = 3$, $S_0 = \frac{9}{S+3}$ and $S_0 = \frac{2S+3}{S+1}$, a single set (a, b, c) verifies the given equations. This set has respectively a = b = c = 0, $a = b = c = \frac{S}{3}$ and S = a > b = c = 0, satisfying the extremum conditions in the statement (b = c and either a = b or c = 0). Consider further that

$$S_0 < 3, \qquad S_0 > \frac{9}{S+3}, \qquad S_0 < \frac{2S+3}{S+1}$$

when $b \in [m, M]$, m < M. Thus, we may consider a and c as functions of b. We will show that $P'(b) \le 0$. From

$$P'(b) = a'bc + ac + abc'$$

and the expressions of a' and c' determined in the proof of Lemma 2.1, we write the inequality $P'(b) \le 0$ as

$$ab(a-b)(a+b+2)(c+1)^2 + bc(b-c)(b+c+2)(a+1)^2 \ge ac(a-c)(a+c+2)(b+1)^2$$
.
Replacing $a-c$ with $(a-b) + (b-c)$, the inequality becomes as follows:

$$a(a-b)A \ge c(b-c)B$$

where

$$A = b(S + 2 - c)(c + 1)^{2} - c(S + 2 - b)(b + 1)^{2},$$

$$B = a(S + 2 - b)(b + 1)^{2} - b(S + 2 - a)(a + 1)^{2}.$$

Since

$$A = (S+2)[b(c+1)^2 - c(b+1)^2] + bc[(b+1)^2 - (c+1)^2]$$

(S+2)(b-c)(1-bc) + bc(b-c)(S+2-a) = (b-c)(S+2-abc)

and

$$B = (S+2)[a(b+1)^2 - b(a+1)^2] + ab[(a+1)^2 - (b+1)^2]$$

= (S+2)(a-b)(1-ab) + ab(a-b)(S+2-c) = (a-b)(S+2-abc),

we have

_

$$a(a-b)A - c(b-c)B = (a-b)(b-c)(a-c)(S+2-abc).$$

Thus, we only need to show that $S + 2 - abc \ge 0$. Indeed, from $S_0 > 1$, we get

$$\frac{1}{a+1} + \frac{1}{b+1} + \frac{1}{c+1} > 1,$$

which is equivalent to S + 2 - abc > 0. Since $P'(b) \le 0$, the function P(b) is strictly decreasing, therefore the product P achieves its maximum for b = m, when $a \ge b = c$, and its minimum for b = M, when either $a = b \ge c$ or c = 0 (see Lemma 2.1).

Theorem 2.1. Let c_1, c_2, \ldots, c_n $(n \ge 3)$ be fixed nonnegative real numbers,

$$S = \sum_{i=1}^{n} c_i, \quad S_0 = \sum_{i=1}^{n} \frac{1}{c_i + 1},$$

and let a_1, a_2, \ldots, a_n be nonnegative real numbers such that $a_1 \ge a_2 \ge \cdots \ge a_n$ and

$$\sum_{i=1}^{n} a_i = S, \quad \sum_{i=1}^{n} \frac{1}{a_i + 1} = S_0.$$

If $S_0 > 1$ for n = 3 and $S_0 \ge n - 2$ for $n \ge 4$, then

(a) the product $P = a_1 a_2 \cdots a_n$ achieves its maximum for $a_1 \ge a_2 = a_3 = \cdots = a_n$;

(b) the product $P = a_1 a_2 \cdots a_n$ achieves its minimum for either $a_1 = a_2 = \cdots = a_{n-1} \ge a_n > 0$ or $a_n = 0$.

Proof. Since the domain

$$D = \left\{ (a_1, \dots, a_n) \in \mathbb{R}^n_+ : \sum_{i=1}^n a_i = S, \sum_{i=1}^n \frac{1}{a_i + 1} = S_0 \right\}$$

is a non-empty compact set in \mathbb{R}^n_+ , the product *P* achieves its maximum and minimum. For n = 3, the conclusion follows from Proposition 2.1. For $n \ge 4$, we use the contradiction method.

(a) Assume, for the sake of contradiction, that P achieves its maximum at (b_1, b_2, \ldots, b_n) with $b_1 \ge b_2 \ge \cdots \ge b_n$ and $b_2 > b_n$. Let x_1, x_2, x_n be nonnegative real numbers such that $x_1 \ge x_2 \ge x_n$ and

$$x_1 + x_2 + x_n = b_1 + b_2 + b_n,$$

On a particular extension of the EV-Theorem

$$\frac{1}{1+x_1} + \frac{1}{1+x_2} + \frac{1}{1+x_n} = \frac{1}{1+b_1} + \frac{1}{1+b_2} + \frac{1}{1+b_n} := S_3$$

We have

$$S_0 = \sum_{i=1}^n \frac{1}{b_i + 1} \le \frac{1}{1 + b_1} + \frac{1}{1 + b_2} + \frac{n - 2}{1 + b_n} \le S_3 + n - 3,$$

hence

$$S_3 \ge S_0 - n + 3 \ge n - 2 - n + 3 = 1.$$

The equality $S_3 = 1$ holds only if $S_0 = n - 2$ and $b_3 = b_4 = \cdots = b_n = 0$. This is not possible since it leads to the contradiction

$$n-2 = \sum_{i=1}^{n} \frac{1}{b_i+1} = \frac{1}{1+b_1} + \frac{1}{1+b_2} + n-2.$$

Therefore, we have $S_3 > 1$. According to Proposition 2.1, the product $x_1x_2x_n$ achieves its maximum for $x_2 = x_n$. So, we have $x_1x_2x_n > b_1b_2b_n$, which contradicts the assumption that the product achieves its maximum at (b_1, b_2, \ldots, b_n) .

(b) Assume, for the sake of contradiction, that *P* achieves its minimum at $(b_1, b_2, ..., b_n)$ with $b_1 \ge b_2 \ge \cdots \ge b_n > 0$ and $b_1 > b_{n-1}$. Let x_1, x_{n-1}, x_n be nonnegative real numbers such that $x_1 \ge x_{n-1} \ge x_n$ and

$$x_1 + x_{n-1} + x_n = b_1 + b_{n-1} + b_n,$$

$$\frac{1}{1+x_1} + \frac{1}{1+x_{n-1}} + \frac{1}{1+x_n} = \frac{1}{1+b_1} + \frac{1}{1+b_{n-1}} + \frac{1}{1+b_n} := S_3.$$

We have

$$S_0 = \sum_{i=1}^n \frac{1}{b_i + 1} \le \frac{1}{1 + b_1} + \frac{n - 2}{1 + b_{n-1}} + \frac{1}{1 + b_n} \le S_3 + n - 3,$$

hence

$$S_3 \ge S_0 - n + 3 \ge n - 2 - n + 3 = 1.$$

The equality $S_3 = 1$ holds only if $S_0 = n - 2$ and $b_2 = b_3 = \cdots = b_n = 0$. This is not possible since it leads to the contradiction

$$n-2 = \sum_{i=1}^{n} \frac{1}{b_i+1} = \frac{1}{1+b_1} + n - 1.$$

Therefore, we have $S_3 > 1$. According to Proposition 2.1, the product $x_1x_{n-1}x_n$ achieves its minimum for $x_1 = x_{n-1} > x_n > 0$ or $x_n = 0$. Thus, we have $x_1x_{n-1}x_n > b_1b_{n-1}b_n$, which contradicts the assumption that the product achieves its minimum at (b_1, b_2, \ldots, b_n) .

Lemma 2.2. Let a, b, c be nonnegative real numbers such that $a \ge b \ge c$ and

$$a + b + c = S$$
, $\frac{1}{a+1} + \frac{1}{b+1} + \frac{1}{c+1} = S_0$,

where $S_0 < 1$ and $S_0 > \frac{9}{S+3}$. For fixed S and S_0 , the range of b is an interval [m, M] with m < M. In addition, b = m for b = c, and b = M for a = b.

Proof. It is not possible to have c = 0 since this involves the contradiction

$$1 > S_0 = \frac{1}{a+1} + \frac{1}{b+1} + 1.$$

By the AM-HM inequality

$$[(a+1) + (b+1) + (c+1)] \left[\frac{1}{a+1} + \frac{1}{b+1} + \frac{1}{c+1} \right] \ge 9,$$

we get

$$S_0 \ge \frac{9}{S+3}$$

The equality $S_0 = \frac{9}{S+3}$ involves $a = b = c = \frac{S}{3}$, hence m = M. For $S_0 > \frac{9}{S+3}$, we may consider a and c as functions of b. Furthermore, the proof is identical to that of Lemma 2.1, but without using the function $f_3(b)$ (because it cannot decrease to zero).

Proposition 2.2. Let a_1, b_1, c_1 be fixed nonnegative real numbers,

$$S = a_1 + b_1 + c_1$$
, $S_0 = \frac{1}{a_1 + 1} + \frac{1}{b_1 + 1} + \frac{1}{c_1 + 1}$,

and let a, b, c be nonnegative real numbers such that $a \ge b \ge c$ and

$$a+b+c=S, \quad \frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=S_0.$$

For $S_0 < 1$, the product P = abc achieves its maximum for $a = b \ge c$, and its minimum for $a \ge b = c$.

Proof. If S = 0, then a = b = c = 0 and the conclusion follows. Consider further S > 0. As shown at Lemma 2.2, in the special case $S_0 = \frac{9}{S+3}$, the given equations are satisfied for $a = b = c = \frac{S}{3}$. Consider further that $S_0 > \frac{9}{S+3}$, when a > c and $b \in [m, M]$, m < M. Thus, we may consider a and c as functions of b. We will show that $P'(b) \ge 0$. As shown in the proof of Proposition 2.1, this inequality is equivalent to

$$(a-b)(b-c)(a-c)(S+2-abc) \le 0.$$

Thus, we only need to show that $S + 2 - abc \leq 0$. Indeed, from $S_0 < 1$ we get

$$\frac{1}{a+1} + \frac{1}{b+1} + \frac{1}{c+1} < 1,$$

which is equivalent to S + 2 - abc < 0. Since $P'(b) \ge 0$, the function P(b) is strictly increasing, therefore the product P achieves its maximum for b = M, when $a = b \ge c$, and its minimum for b = m, when $a \ge b = c$ (see Lemma 2.2).

Theorem 2.2. Let c_1, c_2, \ldots, c_n $(n \ge 3)$ be fixed nonnegative real numbers,

$$S = \sum_{i=1}^{n} c_i, \quad S_0 = \sum_{i=1}^{n} \frac{1}{c_i + 1},$$

and let a_1, a_2, \ldots, a_n be nonnegative real numbers such that $a_1 \ge a_2 \ge \cdots \ge a_n$ and

$$\sum_{i=1}^{n} a_i = S, \quad \sum_{i=1}^{n} \frac{1}{a_i + 1} = S_0.$$

If $S_0 < 1$ for n = 3 and $S_0 \le 1$ for $n \ge 4$, then

(a) the product $P = a_1 a_2 \cdots a_n$ achieves its maximum for $a_1 = a_2 = \cdots = a_{n-1} \ge a_n$; (b) the product $P = a_1 a_2 \cdots a_n$ achieves its minimum for $a_1 \ge a_2 = a_3 = \cdots = a_n$.

Proof. Since the domain

$$D = \left\{ (a_1, \dots, a_n) \in \mathbb{R}^n_+ : \sum_{i=1}^n a_i = S, \sum_{i=1}^n \frac{1}{a_i + 1} = S_0 \right\}$$

is a non-empty compact set in \mathbb{R}^n_+ , the product *P* achieves its maximum and minimum. For n = 3, the conclusion turns out from Proposition 2.2. For $n \ge 4$, we use the contradiction method.

(a) Assume, for the sake of contradiction, that *P* has the maximum value for a set (b_1, b_2, \ldots, b_n) with $b_1 \ge b_2 \ge \cdots \ge b_n$ and $b_1 > b_{n-1}$, which satisfies the given two equations. Let x_1, x_{n-1}, x_n be positive real numbers such that $x_1 \ge x_{n-1} \ge x_n$ and

$$x_1 + x_{n-1} + x_n = b_1 + b_{n-1} + b_n,$$

$$\frac{1}{1+x_1} + \frac{1}{1+x_{n-1}} + \frac{1}{1+x_n} = \frac{1}{1+b_1} + \frac{1}{1+b_{n-1}} + \frac{1}{1+b_n} := S_3$$

We have

 $S_3 < S_0 \le 1.$

According to Proposition 2.2, the product $x_1x_{n-1}x_n$ achieves its maximum for $x_1 = x_{n-1}$. In this case we have $x_1x_{n-1}x_n > b_1b_{n-1}b_n$, which contradicts the assumption that the product achieves its minimum at (b_1, b_2, \ldots, b_n) .

(b) Similarly, we can prove that *P* achieves its minimum for $a_1 \ge a_2 = a_3 = \cdots = a_n$.

Remark 2.1. The problem of determining the maximum and minimum value of the product $P = a_1 a_2 \cdots a_n$ remains an open one for $1 < S_0 < n - 2$ (see Theorem 2.1) or 1 < m < n - 2 (see Theorem 2.1').

Remark 2.2. We may reformulate Theorem 2.1 and Theorem 2.2 as follows:

Theorem 2.1'. Let c_1, c_2, \ldots, c_n $(n \ge 3)$ be fixed nonnegative real numbers such that

$$\sum_{i=1}^{n} \frac{1}{(n-m)c_i + m} = 1 \; ,$$

where $1 < m \le 3$ for n = 3 and $n - 2 \le m \le n$ for $n \ge 4$. If a_1, a_2, \ldots, a_n are nonnegative real numbers such that $a_1 \ge a_2 \ge \cdots \ge a_n$ and

$$\sum_{i=1}^{n} a_i = \sum_{i=1}^{n} c_i, \quad \sum_{i=1}^{n} \frac{1}{(n-m)a_i + m} = 1,$$

then

(a) the product $P = a_1 a_2 \cdots a_n$ achieves its maximum for $a_1 \ge a_2 = a_3 = \cdots = a_n$;

(b) the product $P = a_1 a_2 \cdots a_n$ achieves its minimum for either $a_1 = a_2 = \cdots = a_{n-1} \ge a_n > 0$ or $a_n = 0$.

Theorem 2.2'. Let c_1, c_2, \ldots, c_n $(n \ge 3)$ be fixed nonnegative real numbers such that

$$\sum_{i=1}^{n} \frac{1}{(n-m)c_i + m} = 1 \; ,$$

where 0 < m < 1 for n = 3 and $0 < m \le 1$ for $n \ge 4$. If a_1, a_2, \ldots, a_n are nonnegative real numbers such that $a_1 \ge a_2 \ge \cdots \ge a_n$ and

$$\sum_{i=1}^{n} a_i = \sum_{i=1}^{n} c_i, \quad \sum_{i=1}^{n} \frac{1}{(n-m)a_i + m} = 1,$$

then

(a) the product $P = a_1 a_2 \cdots a_n$ achieves its maximum for $a_1 = a_2 = \cdots = a_{n-1} \ge a_n$;

(b) the product $P = a_1 a_2 \cdots a_n$ achieves its minimum for $a_1 \ge a_2 = a_3 = \cdots = a_n$.

3. APPLICATIONS

Application 3.1. If a_1, a_2, \ldots, a_n $(n \ge 3)$ are nonnegative real numbers such that

$$\sum_{i=1}^{n} \frac{1}{a_i + n - 1} = 1$$

then

$$(n-2)(a_1+a_2+\cdots+a_n)+a_1a_2\cdots a_n \ge (n-1)^2.$$

Proof. Consider $a_1 \ge a_2 \ge \cdots \ge a_n$. According to Theorem 2.1' (case m = n - 1), for fixed $a_1 + a_2 + \cdots + a_n$, the product $a_1a_2 \cdots a_n$ has the minimum value for either $a_1 = a_2 = \cdots = a_{n-1} \ge a_n > 0$ or $a_n = 0$. Thus, it suffices to consider these cases.

Case 1:
$$a_1 = a_2 = \cdots = a_{n-1} \ge a_n > 0$$
. We need to show that if

$$\frac{n-1}{x+1} + \frac{1}{y+1} = 1$$

which leads to

$$y = \frac{n-1-(n-2)x}{x}$$
, $0 < y \le x < \frac{n-1}{n-2}$,

then

$$(n-2)[(n-1)x+y] + x^{n-1}y \ge (n-1)^2,$$

which is equivalent to

$$(n-2)y + x^{n-1}y \ge (n-1)[n-1 - (n-2)x]$$

Since n - 1 - (n - 2)x = xy, we only need to show that

 $n-2+x^{n-1} \ge (n-1)x,$

which is just the AM-GM inequality.

Case 2: $a_n = 0$. We need to show that

$$\sum_{i=1}^{n-1} \frac{1}{a_i + n - 1} = \frac{n-2}{n-1}$$

involves

$$(n-2)(a_1 + a_2 + \dots + a_{n-1}) \ge (n-1)^2.$$

This follows immediately from the AM-HM inequality

$$\left[\sum_{i=1}^{n-1} (a_i + n - 1)\right] \left(\sum_{i=1}^{n-1} \frac{1}{a_i + n - 1}\right) \ge (n-1)^2.$$

The proof is completed. The equality occurs for $a_1 = a_2 = \cdots = a_n = 1$, and also for $a_1 = a_2 = \cdots = a_{n-1} = \frac{n-1}{n-2}$ and $a_n = 0$ (or any cyclic permutation).

Application 3.2. If a_1, a_2, \ldots, a_n $(n \ge 3)$ are nonnegative real numbers such that

$$\sum_{i=1}^{n} \frac{1}{2a_i + n - 2} = 1,$$

then

$$a_1 + a_2 + \dots + a_n - n \ge 2^{n-1}(a_1a_2\cdots a_n - 1)$$

Proof. Consider $a_1 \ge a_2 \ge \cdots \ge a_n$. For n = 3, the inequality is an identity. For $n \ge 4$, according to Theorem 2.1' (case m = n - 2), for fixed $a_1 + a_2 + \cdots + a_n$, the product $a_1a_2 \cdots a_n$ attains its maximum value when $a_1 \ge a_2 = a_3 = \cdots = a_n$. Thus, we only need to show that

$$y + (n-1)x - n \ge 2^{n-1}(yx^{n-1} - 1)$$

for

$$\frac{1}{2y+n-2} + \frac{n-1}{2x+n-2} = 1 ,$$

which implies

$$y = \frac{n-2-(n-3)x}{2x-1}$$
, $\frac{1}{2} < x \le y$.

The required inequality is equivalent to

$$\frac{n-2-(n-3)x+(2x-1)[(n-1)x-n]}{2^{n-1}} \ge \\ \ge (n-2)(x^{n-1}-1)-(n-3)(x^n-1)-2(x-1), \tag{*}$$

or

$$\frac{(n-1)(x-1)^2}{2^{n-2}} \ge (x-1)f(x).$$

where

$$f(x) = (n-2)(x^{n-2} + x^{n-3} + \dots + x + 1) - (n-3)(x^{n-1} + x^{n-2} + \dots + x + 1) - 2$$

= $(n-2)[(x^{n-2}-1) + (x^{n-3}-1) + \dots + (x-1)] - (n-3)[(x^{n-1}-1) + (x^{n-2}-1) + \dots + (x-1)]$
= $(x-1)g(x)$,
$$g(x) = (n-2)[x^{n-3} + 2x^{n-4} + \dots + (n-2)] - (n-3)[x^{n-2} + 2x^{n-3} + \dots + (n-1)]$$

= $-(n-3)x^{n-2} - (n-4)x^{n-3} - \dots - x^2 + 1$.

So, we only need to show that

$$\frac{n-1}{2^{n-2}} \ge g(x).$$

Since *g* is a decreasing function, it suffices to show that

$$\frac{n-1}{2^{n-2}} \ge g\left(\frac{1}{2}\right).$$

This is true if the inequality (*) holds for $x = \frac{1}{2}$. It is easy to show that this last inequality is an identity.

For $n \ge 4$, the equality occurs when $a_1 = a_2 = \cdots = a_n = 1$.

Application 3.3. If a_1, a_2, \ldots, a_n $(n \ge 3)$ are nonnegative real numbers such that

$$\sum_{i=1}^{n} \frac{1}{(n-1)a_i + 1} = 1,$$

then

$$a_1 + a_2 + \dots + a_n - n \le k(a_1 a_2 \dots a_n - 1), \quad k = \left(\frac{n-1}{n-2}\right)^{n-1}.$$

Proof. Consider $a_1 \ge a_2 \ge \cdots \ge a_n$. For n = 3, the inequality is an identity. Consider further $n \ge 4$. According to Theorem 2.2' (case m = 1), for fixed $a_1 + a_2 + \cdots + a_n$, the

product $a_1a_2\cdots a_n$ attains its minimum when $a_1 \ge a_2 = a_3 = \cdots = a_n$. We need to show that if

$$\frac{1}{(n-1)y+1} + \frac{n-1}{(n-1)x+1} = 1 ,$$

which leads to

$$y = \frac{1}{(n-1)x - n + 2}$$
, $\frac{n-2}{n-1} < x \le y$

then

$$y + (n-1)x - n \le k(yx^{n-1} - 1),$$

which is equivalent to

$$1 + [(n-1)x - n + 2][(n-1)x - n] \le k[x^{n-1} - (n-1)x + n - 2],$$
(**)

or

$$(n-1)^2(x-1)^2 \le kf(x), \qquad f(x) = x^{n-1} - 1 - (n-1)(x-1).$$

Since

$$f(x) = (x-1)(x^{n-2} + x^{n-3} + \dots + x - n + 2) = (x-1)^2 g(x),$$

where

$$g(x) = x^{n-3} + 2x^{n-4} + \dots + (n-2)$$

we only need to show that

$$(n-1)^2 \le kg(x).$$

Since g is an increasing function, it suffices to show that

$$(n-1)^2 \le kg\left(\frac{n-2}{n-1}\right).$$

This inequality is true if the inequality (**) holds for $x = \frac{n-2}{n-1}$. Indeed, in this case, (**) is an identity.

For $n \ge 4$, the equality occurs when $a_1 = a_2 = \cdots = a_n = 1$.

Remark 3.3. By the AM-HM inequality

$$\left[\sum_{i=1}^{n-1} ((n-1)a_i + 1)\right] \left(\sum_{i=1}^{n-1} \frac{1}{(n-1)a_i + 1}\right) \ge n^2,$$

we get $a_1 + a_2 + \cdots + a_n \ge n$. As a consequence, the inequality in Application 3.3 involves

$$a_1 a_2 \cdots a_n \ge 1.$$

Actually, the following stronger inequality holds for $n \ge 4$:

$$a_1 a_2 \cdots a_n \ge \frac{a_1 + a_2 + \cdots + a_n}{n}$$

Indeed, denoting $p = a_1 a_2 \cdots a_n$ ($p \ge 1$), the inequality in Application 3.3 leads to

$$na_1a_2\cdots a_n - (a_1 + a_2 + \cdots + a_n) \ge np - k(p-1) - n = (n-k)(p-1) \ge 0.$$

Application 3.4. If a_1, a_2, \ldots, a_n $(n \ge 3)$ are nonnegative real numbers such that

$$\sum_{i=1}^{n} \frac{1}{(n-1)a_i + 1} = 1.$$

then

$$a_1 + a_2 + \dots + a_n \ge n \sqrt[n-1]{a_1 a_2 \cdots a_n}.$$

Proof. Consider $a_1 \ge a_2 \ge \cdots \ge a_n$. If $n \ge 4$, we may apply Theorem 2.2' for m = 1. So, for fixed $a_1 + a_2 + \cdots + a_n$, the product $a_1a_2 \cdots a_n$ has the maximum value when $a_1 \ge a_2 = a_3 = \cdots = a_n$, and we only need to show that if

$$\frac{n-1}{(n-1)x+1} + \frac{1}{(n-1)y+1} = 1, \quad x \le y,$$

that is

$$y = \frac{1}{(n-1)x - n + 2}, \qquad x > \frac{n-2}{n-1},$$

then

$$(n-1)x + y \ge n \sqrt[n-1]{x^{n-1}y}$$
,

that is

$$\left[\frac{(n-1)x+y}{nx}\right]^{n-1} \ge y , \quad \left(1-\frac{x-y}{nx}\right)^{n-1} \ge y$$

By Bernoulli's inequality, it suffices to show that

$$1 - \frac{(n-1)(x-y)}{nx} \ge y \;,$$

which is equivalent to

$$x \ge (nx - n + 1)y,$$

 $(n - 1)(x - 1)^2 \ge 0.$

For n = 3, we need to show that

$$a_1 + a_2 + a_3 \ge 3\sqrt{a_1 a_2 a_3}$$

for

$$\frac{1}{2a_1+1} + \frac{1}{2a_2+1} + \frac{1}{2a_3+1} = 1,$$

that is

 $4a_1a_2a_3 = a_1 + a_2 + a_3 + 1.$

Denote $t = \sqrt[3]{a_1 a_2 a_3}$. From AM-GM inequality, we have

$$4t^3 = a_1 + a_2 + a_3 + 1 \ge 3t + 1,$$

hence $t \ge 1$. Finally, we get

$$a_1 + a_2 + a_3 - 3\sqrt{a_1a_2a_3} = 4t^3 - 1 - 3t\sqrt{t} = (t\sqrt{t} - 1)(4t\sqrt{t} + 1) \ge 0.$$

The equality occurs for $a_1 = a_2 = \dots = a_n = 1.$

Application 3.5. If *a*, *b*, *c*, *d* are nonnegative real numbers such that

$$\frac{1}{a+1} + \frac{1}{b+1} + \frac{1}{c+1} + \frac{1}{d+1} = 2$$

then

 $(a+b+c+d)^2 + 4 \ge 5(abc+bcd+cda+dab).$

Proof. Consider $a \ge b \ge c \ge d$ and write the hypothesis in the form

$$a+b+c+d+2 = abcd+2(abc+bcd+cda+dab)$$

If the sum a+b+c+d is fixed, then the expression abc+bcd+cda+dab has the maximum value when the product abcd has the minimum value, that is when either $a = b = c \ge d > 0$ or d = 0 (Theorem 2.1). Thus, it suffices to consider these cases.

Case 1: $a = b = c \ge d > 0$. We need to prove that

$$(3a+d)^2 + 4 \ge 5a^2(a+3d)$$

Vasile Cîrtoaje and Leonard Giugiuc

184 for

$$\frac{3}{a+1} + \frac{1}{d+1} = 2,$$

that is

 $d = \frac{2-a}{2a-1}, \quad \frac{1}{2} < a \le 2.$

Write the required inequality as follows:

$$\frac{(3a+d)^2 - 16 \ge 5(a^3 + 3a^2d - 4),}{\frac{12(a-1)^2(a+1)(3a-1)}{(2a-1)^2} \ge \frac{10(a-1)^2(a^2+2)}{2a-1}.$$

It is true if

$$6(a+1)(3a-1) \ge 5(2a-1)(a^2+2)$$

Indeed, we have

$$6(a+1)(3a-1) - 5(2a-1)(a^2+2) \ge 6(a+1)(3a-1) - 5(2a-1)(2a+2) = 2(a+1)(2-a) \ge 0.$$

Case 2: d = 0. Let s = a + b + c. We need to show that

$$s^2 + 4 \ge 5abc$$

for

$$\frac{1}{a+1} + \frac{1}{b+1} + \frac{1}{c+1} = 1,$$

that is abc = s + 2. From

$$s^3 \ge 27abc = 27(s+2),$$

we get $(s-6)(s+3)^2 \ge 0$, hence $s \ge 6$. Finally,

$$s^{2} + 4 - 5abc = s^{2} + 4 - 5(s+2) = (s-6)(s+1) \ge 0$$

The equality occurs for a = b = c = d = 1, and also for a = b = c = 2 and d = 0 (or any cyclic permutation).

Acknowledgement. The authors thank to the referee for his pertinent comments and suggestions which help us to improve the manuscript.

REFERENCES

- Cîrtoaje, V. Mathematical Inequalities Extensions and Refinements of Jensen's Inequality. Volume 4, LAP+Ed. Univ. Petrol-Gaze din Ploieşti, 2021.
- [2] Cîrtoaje, V. The Equal Variable Method, JIPAM. J. Inequal. Pure Appl. Math. 8 (2007), no. 1, Article 15, 21 pp.
- [3] Cîrtoaje, V. On the Equal Variable method applied to real variables. Creat. Math. Inform. 24 (2015), no. 2, 145–154.
- [4] Giugiuc, L.; Cîrtoaje, V. On some extensions of the EV-Theorem. Recreații Matematic (2022), no. 2, , 101–109.
- [5] Niculescu, C. P.; Persson, L. E. Convex Functions and Their Applications. Springer, 2019.
- [6] Sedrakyan, H.; Sedrakyan, N. Algebraic Inequalities. Springer, 2018.

UNIVERSITY OF PLOIESTI, ROMANIA DEPARTMENT AUTOMATION AND COMPUTERS *Email address*: vcirtoaje@upg-ploiesti.ro

"TRAIAN" NATIONAL COLLEGE, DROBETA-TURNU SEVERIN, ROMANIA Email address: leonardgiugiuc@yahoo.com