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About the radius of convexity of some analytic functions

OLGA ENGEL1,2, PÁL A. KUPÁN1,2 and ÁGNES O. PÁLL- SZABÓ1,2

ABSTRACT. In this paper we prove a general result regarding the radius of convexity for different particular
functions. The method of convolutions is used. The results are applied to deduce sharp bounds regarding
functions, which satisfy differential subordinations.

1. INTRODUCTION

Let U(z0, r) = {z ∈ C : |z − z0| < r} denote the disk of radius r and center z0. We
denote U(r) = U(0, r), and U = U(1). The radius of convergence of the power series

f(z) = z +

∞∑
n=2

anz
n (1.1)

will be denoted by rf .
For r ∈ (0, rf ) we say that the function f is convex in the disk U(r) = {z ∈ C : |z| < r}
if f is univalent in U(r), and f(U(r)) is a convex domain in C. A function f of the form
(1.1) is convex if and only if

Re
(

1 +
zf ′′(z)

f ′(z)

)
> 0, z ∈ U(r).

In [2] the radius of convexity of the function f is defined by the equality

rcf = sup
{
r ∈ (0, rf ) : Re

(
1 +

zf ′′(z)

f ′(z)

)
> 0, z ∈ U(r)

}
.

The first works which deals with the question of the radius of starlikeness of particu-
lar(Bessel) functions were [5] and [8]. The radius of convexity of Bessel functions were
determined in [2] at the first time. The radius of starlikeness and the radius of convexity
of special functions have been determined in the papers [1], [2], [3], [4], [5], [6], [12]. Other
results regarding the starlikness of Bessel functions are given in [13]. Bounds for analytic
functions, which satisfy a differential inequality are given in [14] and [15].

2. PRELIMINARIES

We denote byH(U) the class of analytic functions defined in U.
Let A0 and P be the sets of functions defined by

A0 = {f ∈ H(U)| f(0) = 1} and P = {f ∈ A0| Re f(z) > 0, z ∈ U}.
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Lemma 2.1. [7] p. 27 Herglotz.
The function f belongs to the class P if and only if there is a probability measure µ on [0, 2π] such
that

f(z) =

∫ 2π

0

1 + e−itz

1− e−itz
dµ(t) = 1 + 2

∞∑
n=1

zn
∫ 2π

0

e−intdµ(t).

As we saw in the abstract we will apply the convolution theory in the study of the
convexity of analytic functions. A basic work in the field of convolution is [9]. Recall the
following definitions and results from this book.

Let f and g be two analytic functions defined by the power series f(z) =
∞∑
n=1

anz
n and

g(z) =
∞∑
n=1

bnz
n. The Hadamard product of these functions is defined by

(f ∗ g)(z) =

∞∑
n=1

anbnz
n.

For V ⊂ A0 the dual set of V is defined by

V d = {g ∈ A0|(f ∗ g)(z) 6= 0, for all f ∈ V and for all z ∈ U}.

Lemma 2.2. [9] Let the function hT be defined by the power series hT (z) = z +
∞∑
n=2

n+iT
1+iT z

n.

The function f(z) = z +
∞∑
n=2

anz
n is starlike in U if and only if

f(z)

z
∗ hT (z)

z
6= 0, for all z ∈ U, and for all T ∈ R.

Lemma 2.3. [6] Let the class L be defined by

L = {f ∈ A0 : Re f(z) >
1

2
, z ∈ U}.

The following inclusion holds L ⊂ Pd.

3. MAIN RESULTS

Theorem 3.1. Let f be an analytic function in U given by the equality

f(z) = z +

∞∑
n=2

anz
n. (3.2)

If
∞∑
n=2

n2|an| ≤ 1, (3.3)

then the function f is convex in U.

Proof. The function f is convex if and only if g(z) = zf ′(z) is starlike. According to
Lemma 2 the function g is starlike in U if and only if

g(z)

z
∗ hT (z)

z
6= 0, for all z ∈ U, and for all T ∈ R. (3.4)
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g(z)

z
∗ hT (z)

z
= 1 +

∞∑
n=1

(n+ 1)an+1
n+ 1 + iT

1 + iT
zn

=
(

1 + 2

∞∑
n=1

zn
)
∗
(

1 +
1

2

∞∑
n=1

(n+ 1)an+1
n+ 1 + iT

1 + iT
zn
)
. (3.5)

According to Lemma 3 the starlikeness condition (3.4) holds if

Re
(

1 +
1

2

∞∑
n=1

(n+ 1)an+1
n+ 1 + iT

1 + iT
zn
)
>

1

2
, z ∈ U.

This condition is equivalent to

Re
(

1 +

∞∑
n=1

(n+ 1)an+1
n+ 1 + iT

1 + iT
zn
)
> 0, z ∈ U.

We put z = r(cos θ + i sin θ), r ∈ (0, 1), and we get

Re
(

1 +

∞∑
n=1

(n+ 1)an+1
n+ 1 + iT

1 + iT
zn
)

=
1

1 + T 2

[
T 2
(

1

+

∞∑
n=1

(n+ 1)an+1r
n cosnθ

)
+ T

( ∞∑
n=1

(n+ 1)nan+1r
n sinnθ

)
+1 +

∞∑
n=1

(n+ 1)2an+1r
n cosnθ

]
. (3.6)

We have

1 +

∞∑
n=1

(n+ 1)an+1r
n cosnθ ≥ 1−

∞∑
n=1

(n+ 1)|an+1|rn >

1−
∞∑
n=1

(n+ 1)2|an+1|rn ≥ 0, r ∈ (0, 1), θ ∈ [0, 2π]. (3.7)

Thus the starlikeness condition (3.4) holds if

∆T (θ) =
( ∞∑
n=1

(n+ 1)nan+1r
n sinnθ

)2
− 4
(

1 +

∞∑
n=1

(n+ 1)an+1r
n cosnθ

)
(

1 +

∞∑
n=1

(n+ 1)2an+1r
n cosnθ

)
< 0, θ ∈ R, r ∈ (0, 1). (3.8)

On the other hand we have

∆T (θ) ≤ 4
( ∞∑
n=1

(n+ 1)nan+1r
n sin

nθ

2
cos

nθ

2

)2
− 4
(

1−
∞∑
n=1

(n+ 1)|an+1|rn
)

(
1 +

∞∑
n=1

(n+ 1)2an+1r
n cosnθ

)
, θ ∈ R, r ∈ (0, 1). (3.9)
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Now we replace the number 1 in the last two brackets by the smaller expression

1 +

∞∑
n=1

(n+ 1)2|an+1|

and we get

∆T (θ) ≤ 4
( ∞∑
n=1

(n+ 1)nan+1r
n sin

nθ

2
cos

nθ

2

)2
− 8
( ∞∑
n=1

n2|an+1|rn
)

( ∞∑
n=1

(n+ 1)2|an+1|rn
1± cosnθ

2

)
, θ ∈ R, r ∈ (0, 1). (3.10)

We will prove that( ∞∑
n=1

(n+ 1)nan+1r
n sin

nθ

2
cos

nθ

2

)2
−
( ∞∑
n=1

n2|an+1|rn
)

( ∞∑
n=1

(n+ 1)2|an+1|rn
1± cosnθ

2

)
≤ 0, θ ∈ R, r ∈ (0, 1). (3.11)

The inequality (3.11) holds because according to the Cauchy-Schwarz inequality, we have( ∞∑
n=1

(n+ 1)n|an+1|rn
√

1± cosnθ

2

)2
≤
( ∞∑
n=1

n2|an+1|rn
)

( ∞∑
n=1

(n+ 1)2|an+1|rn
1± cosnθ

2

)
≤ 0, θ ∈ R, r ∈ (0, 1),

and it follows that( ∞∑
n=1

(n+ 1)nan+1r
n sin

nθ

2
cos

nθ

2

)2
≤
( ∞∑
n=1

(n+ 1)n|an+1|rn
√

1± cosnθ

2

)2
≤

( ∞∑
n=1

n2|an+1|rn
)( ∞∑

n=1

(n+ 1)2|an+1|rn
1± cosnθ

2

)
≤ 0, θ ∈ R, r ∈ (0, 1).

Finally (3.10) and (3.11) imply ∆T (θ) ≤ 0, θ ∈ [0, 2π], T ∈ R, and the proof is done. �

Remark 3.1. As far as we know the method of convolution is applied here at the first time
in the study of the convexity of analytic functions.

Theorem 3.2. Let f be an analytic function in U, of the form f(z) =
∞∑
n=1

bnz
n, and

Re
(

1 + α0f(z) + α1zf
′(z) + . . .+ αpz

pf (p)(z)
)
> 0, z ∈ U. (3.12)

We denote P (n) = α0 +
p∑
k=1

αkn(n− 1) . . . (n− k + 1). If r ∈ (0, 1] and

∞∑
n=2

n2
∣∣∣P (1)

P (n)

∣∣∣ ≤ 1, (3.13)

then

2

∞∑
n=1

1

P (n)
rn > Re f(z) > 2

∞∑
n=1

(−1)n

P (n)
rn, z ∈ U(r).
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The result is sharp.

Proof. Let b1 = 1, and f(z) =
∞∑
n=1

bnz
n. We have

1 +

p∑
k=0

zkαkf
(k)(z) = 1 + α0f(z) +

p∑
k=1

αk

∞∑
n=1

n(n− 1) . . . (n− k + 1)bnz
n

= 1 +

∞∑
n=1

(
α0 +

p∑
k=1

αkn(n− 1) . . . (n− k + 1)
)
bnz

n = 1 +

∞∑
n=1

P (n)bnz
n. (3.14)

The Herglotz formula, (3.12), and (3.14) imply

1 +

∞∑
n=1

P (n)bnz
n = 1 + 2

∞∑
n=1

zn
∫ 2π

0

e−tindµ(t),

and we get bn = 2
P (n)

∫ 2π

0
e−tindµ(t). Thus it follows that

f(z) =

∞∑
n=1

2zn

P (n)

∫ 2π

0

e−tindµ(t). (3.15)

According to Theorem 1 the condition (3.13) implies that the function

g(z) = z +

∞∑
n=2

P (1)

P (n)
zn

is convex in U. This implies that

f∗(z) = 2

∞∑
n=1

zn

P (n)

is also convex. The equality (3.15) can be rewritten as follows

f(z) =

∫ 2π

0

f∗(ze−ti)dµ(t), (3.16)

which means that f(z) can be written as a convex combination of the values of f∗. The
convexity of f∗ and the equality (3.16) imply f(U) ⊂ f∗(U), and this inclusion implies the
subordination f ≺ f∗. The subordination and the convexity of f∗ imply f∗(r) > Re f(z) ≥
f∗(−r), z ∈ U(r) which is equivalent to

2

∞∑
n=1

1

P (n)
rn > Re f(z) > 2

∞∑
n=1

(−1)n

P (n)
rn, z ∈ U(r),

and the proof is finished. �

Remark 3.2. The functions

ft(z) =

∞∑
n=1

2zn

P (n)
e−tin, t ∈ [0, 2π], z ∈ U

are the extreme points of the class determined by the differential inequality (3.12). It is
easily seen that the radius of convergence of these functions are equal to one. Thus the
radius of convexity in case of each extreme functions are equal to one.
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Corollary 3.1. Let f be an analytic function in U of the form f(z) =
∞∑
n=1

bnz
n. If

Re
(

1 + f(z) + f ′(z) + 7z2f ′′(z) + 6z3f (3)(z) + z4f (4)(z)
)
> 0, z ∈ U, (3.17)

then for every z ∈ U, the following inequality holds

Re f(z) > 2
∑
n≥1

(−1)n

n4 + 1
= −1 +

i

2

[π
ζ

(
e−πζ +

2πζ

e2πζ − 1

)
− π

ζ

(
e−πζ +

2πζ

e2ζ − 1

)]
,

where ζ = 1√
2

+ i 1√
2
, and ζ = 1√

2
− i 1√

2
.

Proof. We have

P (n) = 1 + n+ 7n(n− 1) + 6n(n− 1)(n− 2) + n(n− 1)(n− 2)(n− 3) = n4 + 1

It is easily seen that
∑
n≥2

P (1)
P (n) <

∑
n≥2

2
n4 = 2

(
π4

90 − 1
)
≤ 2

3 . According to Theorem 2, if∑
n≥2

P (1)
P (n) ≤ 1, then it follows that

Re f(z) > 2

∞∑
n=1

(−1)n

P (n)
= 2

∑
n≥1

(−1)n

n4 + 1
, z ∈ U.

In order to finish the proof, we will use the identity
∞∑

n=−∞

einα

n2 + ζ2
=
π

ζ

(
e−ζ|α| +

2αζ

e2πζ − 1

)
, −2π < α < 2π, Re ζ > 0.

Putting in this equality α = π, ζ = 1√
2

+ i 1√
2
, and ζ = 1√

2
− i 1√

2
, and subtracting the

obtained two equalities we obtain

2
∑
n≥1

(−1)n

n4 + 1
= −1 +

i

2

[π
ζ

(
e−πζ +

2πζ

e2πζ − 1

)
− π

ζ

(
e−πζ +

2πζ

e2πζ − 1

)]
.

�

Corollary 3.2. Let g be the analytic function defined by

gn(z) =
(n+ 1)!

zn

(
ez − 1− z

1!
− z2

2!
− . . .− zn

n!

)
. (3.18)

If n ≥ 7 then gn is convex in U.

Proof. The function gn is of the form (3.2). Thus in order to prove the convexity of gn it is
enough to check the condition (3.3).
Since

gn(z) = z +

∞∑
p=2

zp

(n+ 2) . . . (n+ p)
.

it follows that the mapping gn is convex provided that

αn =

∞∑
p=2

p2

(n+ 2) . . . (n+ p)
≤ 1. (3.19)
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Since the sequence (αn)n≥1 is strictly decreasing it is enough to prove (3.19) in case n = 7.
If n ≥ 7, then we have

αn ≤ α7 <

∞∑
p=2

p2

9p−1
=

298

512
= 0.58 . . . ≤ 1,

and the proof is done. �

Remark 3.3. Since the function gn, n ≥ 7 maps the unit disk U on a convex domain
gn(U), which is simmetric with respect to the real axys, the following double inequality
holds

gn(−1) ≤ Re gn(eiθ) ≤ gn(1), θ ∈ [0, 2π].
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