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A problem of entropy generation in a channel filled
with a porous medium

DALIA CIMPEAN, NICOLAIE LUNGU AND IOAN POP

ABSTRACT. The problem studied is that of entropy generation for mixed convection in an inclined
channel. The channel is filled with a porous medium and has an uniform wall heat flux. The flow
is upward and the heat flux is into the channel. The solutions of the governing Darcy and energy
equations are used for analyzing the entropy generation and the Bejan number into the channel. The
results are plotted and studied for different important parameters involved and for different inclina-
tions angle of the channel.

1. INTRODUCTION

Minimization of entropy generation is a method for modeling and optimizing
of energy systems (see Bejan [3]) which results from the analysis of the second law
of thermodynamics. In earlier studies related to the natural convection, only the
first-law of thermodynamics was used. However, the method of entropy genera-
tion combines from the start the most important parameters of thermodynamics,
heat transfer and fluid mechanics. To improve the heat transfer performance is
a chief task in heat exchanger designs (see Ingham and Pop [5]). Owing to the
fact that the heat transfer enhancement is always achieved at the expense of the
increase of friction loss, the optimal trade-off by selecting the most appropriate
configuration and the best flow conditions has become the critical challenge for
the design work. The analysis of the energy utilization and the entropy gener-
ation has become one of the primary objectives in designing a thermal system.
Bejan [2], has described the systematic methodology of computing entropy gen-
eration through heat and fluid flow in heat exchangers. Fundamentals of entropy
generation are also presented by Rosen [7] and Narusawa [6].

The aim of this study is to present results for entropy generation due to mixed
convection heat transfer in an inclined channel filled with a porous medium, for
different parameters involved, as Rayleigh numbers or the inclination angle of
the channel. The Bejan number is also presented and the results are observed.

2. MATHEMATICAL MODELING

Consider the mixed convection flow between two inclined parallel plates filled
with a porous medium, see Figure 1. The x axis is considered up lengthways and

Received: 30.10.2008. In revised form: 30.04.2009. Accepted: 23.05.2009.
2000 Mathematics Subject Classification. 35Qxx, 35Q35.
Key words and phrases. Mixed convection, porous medium, analytical solutions, entropy generation.

357



358 Dalia Cimpean, Nicolaie Lungu and Ioan Pop

the y axis is oriented into the channel. The flow is assumed to be fully devel-
oped (one-dimensional) and steady, and the fluid and porous media properties
are constant except for the variation of density in the buoyancy term of the Darcy
equation. The porous medium is considered to be homogeneous and isotropic.
Also, the fluid within the porous medium is assumed to saturate the solid ma-
trix and both are in local thermodynamic equilibrium. The fluid has an uniform
upward (assisting flow) streamwise velocity distribution at the channel entrance.
The walls are at uniform heat flux q. Under these assumptions, and with the use
of the Darcy’s law and the Boussinesq approximation, the governing equations
are written as follows

∂u

∂x
+

∂v

∂y
= 0 (2.1)
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where u and v are the cartesian velocity components, T is the fluid temperature.
The coefficients are β the fluid thermal expansion, K the specific permeability
of the medium, ν the kinematic viscosity and αm the effective fluid thermal dif-
fusivity. Also, the tilt angle, measured counterclockwise from the horizontal is
denoted by γ in the considered equations.
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Figure 1. The parallel plates configuration for upward flow.

The assumption of fully development flow means that the axial (x direction) ve-
locity u depends only on the transverse coordinate y, i.e. u = u(y). Then, from
Eq. (2.1) we have ∂v

∂y = 0 which, due to the boundary condition v = 0 on y = 0

gives v ≡ 0. Also the boundary conditions are:

∂T

∂y
= − q

k
on y = 0;

∂T

∂y
=

q

k
on y = D (2.4)

where q is the heat flux to the wall, D is the channel width and k is the magnitude
of the fluid thermal conductivity of the porous medium.
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We consider that the temperature T is an arbitrary function of y and a linear
function of x and we introduce the following non-dimensional variables:

X =
αm

U0D2
x, Y =

y

D
, U =

u

U0
, θ =

T − T0

qD/k
(2.5)

Then we have θ(X,Y ) = C1X + F (Y ) and following the paper by Cimpean et al.
[4], a third order ordinary differential equation is obtained:

d3F

dY 3
− 2P1

dF

dY
+ 4P2 = 0 (2.6)

which has to be solved for dF
dY , subject to the boundary conditions:

dF

dY
= −1 at Y = 0;

dF

dY
= 1 at Y = 1 (2.7)

In the Eq. (2.6) the parameters are P1 = Ra
Pe sin γ and P2 = Ra

Pe2 cos γ, where Ra =
gρβK(qwD/k)D

αmμ and Pe = U0D
αm

are the Rayleigh and P éclet number, respectively.
The analytical solutions for the velocity and temperature profiles are:
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+ 2
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Y + 2X + C4 (2.9)

3. ENTROPY GENERATION

The entropy generation is caused by the non-equilibrium state of the fluid,
resulting from the thermal gradient between the two media. For the problem in-
volved, the exchange of energy and momentum within the fluid-saturated porous
medium and at the solid boundaries, give the non-equilibrium conditions which
cause the entropy generation in the flow field of the channel. This entropy gener-
ation is due to the irreversible nature of heat transfer and viscosity effects, within
the fluid and at the solid boundaries. From the known temperature and velocity
fields, volumetric entropy generation can be calculated by the equation (see Bejan
[2] and Baytas [1]):

Sm
gen =

k

T 2
0

(∇T )
2
+

μ

KT0

(
u2 + v2

)
(3.10)

Further, we transform the above Eq. (3.10) into the dimensionless form by using
the expressions (2.5) and we will obtain the dimensionless entropy generation
number, Ns, as follows:

Ns =
4

Pe2
+

(
∂θ

∂Y

)2

+ΦU2 (3.11)

where Pe is the Peclet number and Φ is called the irreversibility distribution ratio

(see Baytas [1]), given as Φ = μT0

k

[
α2

m

K(ΔT )2

]
.

The total local entropy generation number can be written as a summation of
the local entropy generation due to heat transfer (HTI) and the local entropy gen-
eration due to fluid friction (FFI), as Ns = HTI+FFI . The last expression gives
us the possibility to calculate these terms separately and then compare them to
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notice which entropy generation mechanism dominates. In the convection prob-
lems, both, fluid friction and heat transfer, contribute to the rate of entropy gen-
eration. The entropy in a system is associated with the presence of irreversibility.
We have to notice that the contribution of the heat transfer entropy generation,
HTI , to the overall entropy generation rate, is needed in many engineering ap-
plications.

As it is well known, the Bejan number, (Be), is an alternative irreversibility
distribution parameter and represents the ratio between the heat transfer irre-
versibility (HTI) and the total irreversibility due to heat transfer and fluid fric-
tion (Ns). It is defined by Be = HTI

Ns
and takes the values between 0 and 1. The

value of Be = 1 is the limit at which the heat transfer irreversibility dominates,
Be = 0 is the opposite limit at which the irreversibility is dominated by fluid fric-
tion effects and Be = 0.5 is the case in which the heat transfer and fluid friction
entropy production rates are equal (Varol et al. [8], [9]).

4. RESULTS AND DISCUSSION

The fluid has an uniform, upward, streamwise velocity distribution at the
channel entrance in the same direction with the convective flow. Figure 2 ex-
press the entropy generation number as a function of Y, for different values of Φ,
the irreversibility distribution ratio, for P2 = 0 (vertical channel), P2 = 10, and
P2 = −10. The entropy generation number is significantly higher at the walls
(see Figure 2a) and decreases to a minimum value to the middle of the channel
( see Figure 2b). By increasing the parameter Φ, the entropy generation number
increases. For vertical channel (P2 = 0), a similar behavior is observed on the
walls. Also the Ns profiles are similar on the lower wall for P2 = −10 to profiles
on the upper wall for P2 = 10 and vice versa.

Figure 3 plot the entropy generation number and fluid friction irreversibility
as functions of the inclination angle of the channel, γ. It is shown that, near the
walls, the entropy generation number and also FFI have a symmetric behavior
about the value γ = π/2. By increasing the parameter Φ, the values of Ns and
FFI increase. Fluid friction irreversibility values are smaller that the values of
entropy generation number. Near by lower wall, the values of entropy generation
number increases and the fluid friction irreversibility decreases with increasing
the inclination angle of the channel (see Figure 3a). A vice versa phenomenon is
observed in the vicinity of the upper wall, as can be observed in the Figure 3b.

Figure 4 represents the behavior of both, entropy generation number and heat
transfer irreversibility, HTI , versus the inclination angle of the channel. By com-
paring this figure to Figure 3, we conclude that the inclination angle of the chan-
nel has a much important role on HTI than on FFI .

Figure 5 shows the Bejan number versus Rayleigh number, for values of the
parameter Φ = 10−1, 10−2, 10−3 and the values of the inclination angle of the
channel γ = π/6, π/4, π/3. For all parameters involved, as increasing Rayleigh,
the Bejan number yields to a constant value. It is important to observe that for
Φ = 10−2, FFI dominates into a small Rayleigh interval (Be < 0.5) and HTI
dominates for the rest of the Rayleigh values (Be > 0.5). Also, higher values
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of the Bejan number are obtained for lower values of the inclined angle of the
channel.
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Figure 2. Entropy generation profiles, Ns, as functions of Y , for P2 = 0
(vertical channel), plotted by line, P2 = −10, plotted by plus signs and P2 = 10,

shown by dotes.
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Figure 3. Entropy generation number Ns (shown by line) and FFI
(shown by broken line) versus inclined angle γ.,

in the vicinity of the lower wall (a) and upper wall (b).
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Figure 4. Entropy generation number Ns (shown by line) and HTI
(shown by circles) versus inclined angle γ.,

for different Ra numbers).
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Figure 5. Bejan number Be versus Ra number, for different Φ parameters
and for values of the inclination angle γ = π/6 (shown by line), γ = π/4

(shown by dotted) and γ = π/3 (shown by broken line).
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