Artin symbol of the Kummer fields

DIANA SAVIN

ABSTRACT. Let l and p be odd prime distinct natural numbers, ξ be a primitive root of order l of unity. It is known that the field extension $\mathbf{Q}(\xi) \subset \mathbf{Q}(\xi, \sqrt[l]{p})$ is a Galois extension. In this article we study the Artin symbol in the Galois group $G(\mathbf{Q}(\xi, \sqrt[l]{p}) / \mathbf{Q}(\xi))$.

1. Introduction

First, we recall some results we are using here:
Theorem 1.1. ([3]). Let $n \in \boldsymbol{N}, n \geq 2$ and $\mathbf{Q} \subset \boldsymbol{K}$ be an extension of fields of degree [\boldsymbol{K} : $Q]=n, p$ be a prime natural number. There exist positive integers $e_{i}, i=\overline{1, g}$ such that

$$
p \mathbf{Z}_{K}=\prod_{i=1}^{g} P_{i}^{e_{i}}
$$

where all $P_{i}, i=\overline{1, g}$, are prime ideals above p and \boldsymbol{Z}_{K} is the ring of integers of \boldsymbol{K} over \boldsymbol{Q}.
Definition 1.1. ([3]). The integer e_{i} is called the ramification index of p at P_{i}. The degree f_{i} of the field extension defined by

$$
f_{i}=\left[\mathbf{Z}_{K} / P_{i}: \mathbf{Z} / p \mathbf{Z}\right]
$$

is called the residual degree of p.
Theorem 1.2. ([3]). We have the following formulas:

$$
N\left(P_{i}\right)=p^{f_{i}}
$$

and

$$
\sum_{i=1}^{g} e_{i} f_{i}=n=[\boldsymbol{K}: \boldsymbol{Q}]
$$

In the case when \mathbf{K} / \mathbf{Q} is a Galois extension, the result is more specific:
Theorem 1.3. ([3]). Assume that K / Q is a Galois extension. Then, for all P_{i}, the ramification indices e_{i} are equal (say to e), the residual degrees f_{i} are equal as well (say to f) and $e f g=n$.

Received: 20.09.2006. In revised form: 19.02.2007.
2000 Mathematics Subject Classification. 11R18.
Key words and phrases. Kummer fields, cyclotomic fields.

Proposition 1.1. ([5]). Let L / K be a Galois extension and $\mathbf{Z}_{K}, \boldsymbol{Z}_{l}$ be the rings of algebraic integers of the fields K and L.Let $P \in \operatorname{Spec}\left(\mathbf{Z}_{K}\right)$ such that the extension $K \subset L$ is unramified in P. Let P^{\prime} be a prime ideal in the ring \mathbf{Z}_{L} such that $P^{\prime} / P \mathbf{Z}_{L}$. Then there exists a unique automorphism $\sigma \in G(L / K)$ such that:

$$
\sigma(x) \equiv x^{N(P)}\left(\bmod P^{\prime}\right)
$$

Definition 1.2. ([1]). The element σ of the Proposition 1.1. is denoted $\left(\frac{L / K}{P^{\prime}}\right)$.
If the extension $\mathrm{K} \subset \mathrm{L}$ is Abelian, then $\left(\frac{L / K}{P^{\prime}}\right)$ does not depend on $P^{\prime} \in \operatorname{Spec}\left(\mathbf{Z}_{L}\right)$, but only on $P=P^{\prime} \cap \mathbf{Z}_{K}$ and it is denoted $\left(\frac{L / K}{P}\right)$

Definition 1.3. ([1]). Let $\mathrm{K} \subset \mathrm{L}$ be a Galois extension of fields, and let P^{\prime} be a maximal ideal in the ring \mathbf{Z}_{L}. The set

$$
Z_{P^{\prime}}=\left\{\tau \in G(L / K) / \tau\left(P^{\prime}\right)=P^{\prime}\right\}
$$

is a subgroup in $G(L / K)$ and it is called the group of decomposition of P^{\prime} in the extension $K \subset L$.
Theorem 1.4. ([1]). Let $K \subset L$ be a Galois extension of fields, and let P be a maximal ideal in the ring \mathbf{Z}_{K}.
i) For any $P^{\prime} \in \operatorname{Max}_{P}\left(\mathbf{Z}_{L}\right)$ we have $\left[G(L / K): Z_{P^{\prime}}\right]=g_{P}$, where g_{P} is the number of prime ideals from \mathbf{Z}_{L} which divide P.
ii) If $K \subset L$ is a unramified in P and Abelian extension of fields and \boldsymbol{Z}_{K} / P is a finite field, then $\left(\frac{L / K}{P^{\prime}}\right)$ generate the group $Z_{P^{\prime}}$ and $\left|Z_{P^{\prime}}\right|=f_{P^{\prime}}$
Proposition 1.2. ([6]). Let l be a prime natural number $l \geq 3$ and ξ be a primitive root of unity of l - th order. A prime natural number $p \geq 3$ is a prime in the ring $Z[\xi]$ if and only if \bar{p} is generating the group $\left(\mathbf{Z}_{l}^{*}, \cdot\right)$

Let l be a odd prime natural number and ξ be a primitive root of unity of order l. $Z[\xi]$ is the ring of integers of the cyclotomic field $\mathbf{Q}(\xi)$.
Let p be a prime natural number, $p \neq l$, and P be a prime ideal in the ring $Z[\xi], P$ dividing the ideal generated by $p,(p)$, in the ring $Z[\xi]$.
Proposition 1.3. ([3]). Let $\alpha \in Z[\xi], \alpha \notin P$. There is an integer c, unique modulo l, such that $\alpha^{\frac{N(P)-1}{l}} \equiv \xi^{c}(\bmod P)$.
Definition 1.4. ([3]). The root of unity ξ^{c} is called the power-character of the number α with respect to the prime ideal P in the ring $Z[\xi]$. Following Hilbert([3]), we denote ξ^{c} by $\left\{\frac{\alpha}{P}\right\}$.

Proposition 1.4. ([3]). If $\alpha, \beta \in Z[\xi],(\alpha),(\beta)$ are not divisible with P, then:

$$
\left\{\frac{\alpha \beta}{P}\right\}=\left\{\frac{\alpha}{P}\right\} \cdot\left\{\frac{\beta}{P}\right\} .
$$

Definition 1.5. ([3]). Let $\alpha \in Z[\xi]$. If the congruence $x^{l} \equiv \alpha(\bmod P)$ has solutions in the ring $Z[\xi]$, we say that α is a power-residue of order l with respect to the prime ideal P.

Proposition 1.5. ([5]). Let P be a prime ideal in the ring $Z[\xi], P \neq(1-\xi), \alpha \in Z[\xi]$, α being relatively prime with P. Then α is a power-residue of order l with respect to the ideal P, if and only if $\left\{\frac{\alpha}{P}\right\}=1$
Theorem 1.5. ([3]). Let ξ be a primitive root ofl-order, of unity, where l is a prime natural number. A prime ideal P in the ring $Z[\xi]$, is in the ring of integers in the Kummer field $Q(M ; \xi)$ (where $M=\sqrt[l]{\mu}, \mu \in \mathbf{Z})$ in one of the situations:
i) is equal with the l-power of a prime ideal, if $\left\{\frac{\mu}{P}\right\}=0$,
ii) it decomposes in l different prime ideals, if $\left\{\frac{\mu}{P}\right\}=1$,
iii) is a prime ideal, if $\left\{\frac{\mu}{P}\right\}=$ a root of order l of unity, different from 1 .

Proposition 1.6. ([8]). Let A be the ring of integers of the Kummer field $\boldsymbol{Q}(\sqrt[l]{p} ; \xi)$ where p is a prime natural number, $p \neq l$ and ξ is a primitive root of order l of unity. Let G be the Galois group of the Kummer field $\boldsymbol{Q}(\sqrt[l]{p} ; \xi)$ over $\boldsymbol{Q}(\xi)$. Then G is an Abelian group and for any $\sigma \in G$ and for any $P \in \operatorname{Spec}(A)$, we have $\sigma(P) \in \operatorname{Spec}(A)$.

Proposition 1.7. ([7]). Let p and r be prime integers, $p \equiv 1(\bmod r)$ and take ξ a primitive root of order r of the unity. If $\boldsymbol{Q}(\xi ; \sqrt[r]{p})$ is the Kummer field with the ring of integers A, y_{1} and y_{2} are integer numbers such that $\operatorname{gcd}\left(y_{1}, y_{2}\right)=1, p$ does not divide $y_{2}, m, n \in\{0,1, \ldots, r-1\}, y_{2}-y_{1}$ is not divisible with r, then,

$$
\left(y_{2}-\xi^{m} \sqrt[r]{p} y_{1}\right) A \text { and }\left(y_{2}-\xi^{n} \sqrt[r]{p} y_{1}\right) A
$$

are comaximal ideals of A.

2. MAIN RESULTS

Proposition 2.8. Let p, q and l be prime distinct integers, \bar{q} is generating the group $\left(\mathbf{Z}_{l}^{*}, \cdot\right)$ and take ξ a primitive root of order l of the unity. If $L=\mathbf{Q}(\xi ; \sqrt[l]{p})$ is the Kummer field with the ring of integers A and $K=\mathbf{Q}(\xi)$, then:

$$
\left(\frac{L / K}{q \mathbf{Z}[\xi]}\right)(\sqrt[l]{p})=\left\{\frac{p}{q \mathbf{Z}[\xi]}\right\} \sqrt[l]{p} .
$$

Proof. Since p and q are prime distinct natural numbers, this implies

$$
\left\{\frac{p}{q \mathbf{Z}[\xi]}\right\} \neq 0
$$

The case I: If $\left\{\frac{p}{q \mathbf{Z}[\xi]}\right\}=1$

We know that $\frac{L / K}{q \mathbf{Z}[\xi]}$ is the trivial automorphism, therefore

$$
\left(\frac{L / K}{q \mathbf{Z}[\xi]}\right)(\sqrt[l]{p})=\sqrt[l]{p}=\left\{\frac{p}{q \mathbf{Z}[\xi]}\right\} \sqrt[l]{p}
$$

The case II: If $\left\{\frac{p}{q \mathbf{Z}[\xi]}\right\} \neq 1$, we obtain that $f_{q \mathbf{Z}_{L}}=l$.
We denote

$$
\left(\frac{L / K}{q \mathbf{Z}[\xi]}\right)(\sqrt[l]{p})=\xi^{c} \sqrt[l]{p}
$$

Uging Proposition 1.1. we have:

$$
\left(\frac{L / K}{q \mathbf{Z}_{L}}\right)(\sqrt[l]{p}) \equiv \sqrt[l]{p}{ }^{N\left(q \mathbf{Z}_{L}\right)}\left(\bmod q \mathbf{Z}_{L}\right)
$$

But $N(q \mathbf{Z}[\xi])=N\left(q \mathbf{Z}_{L}\right)$, therefore

$$
\xi^{c} \sqrt[l]{p} \equiv \sqrt[l]{p}^{N(q \mathbf{Z}[\xi])}\left(\bmod q \mathbf{Z}_{L}\right)
$$

The last congruence implies that:

$$
\left.\sqrt[l]{p}(\sqrt[l]{p})^{N(q \mathbf{Z}[\xi])-1}-\xi^{c}\right) \equiv\left(\bmod q \mathbf{Z}_{L}\right)
$$

Since $\sqrt[l]{p} \in U\left(\mathbf{Z}_{L}\right)$ and $P \in \operatorname{Spec}\left(\mathbf{Z}_{L}\right)$, it results that:

$$
\sqrt[l]{p}^{N(q \mathbf{Z}[\xi])-1} \equiv \xi^{c}\left(\bmod q \mathbf{Z}_{L}\right)
$$

This equality is equivalent with:

$$
\sqrt[l]{p^{q^{l-1}-1}} l \equiv \xi^{c}\left(\bmod q \mathbf{Z}_{L}\right)
$$

But $\sqrt[l]{p} \frac{q^{l-1}-1}{l}-\xi^{c} \in \mathbf{Z}[\xi]$ and $q \mathbf{Z}_{L} \cap \mathbf{Z}[\xi]=q \mathbf{Z}[\xi]$, therefore we obtain:

$$
\sqrt[l]{p^{\frac{q^{l-1}-1}{l}} \equiv \xi^{c}(\bmod q \mathbf{Z}[\xi])}
$$

According to the Proposition 1.3. and Definion 1.4., we get that

$$
\xi^{c}=\left\{\frac{p}{q \mathbf{Z}[\xi]}\right\}
$$

From the previously proved, we obtain:

$$
\left(\frac{L / K}{q \mathbf{Z}[\xi]}\right)(\sqrt[l]{p})=\left\{\frac{p}{q \mathbf{Z}[\xi]}\right\} \sqrt[l]{p} .
$$

We give now an application of the above result:

Proposition 2.9. Let p and l be odd prime distinct natural numbers, $l \equiv 1(\bmod 3), \epsilon$ be a primitive root of order 3 of unity, $K=\mathbf{Q}(\epsilon)$ be the cyclotomic field. Let $L=\mathbf{Q}(\epsilon ; \sqrt[3]{l})$ be the Kummer field with the ring of integers A. If there exist $x, y \in \mathbf{N}, p$ does not divide x such that $p=x^{3}+l y^{3}$, then the Artin symbol:

$$
\left(\frac{L / K}{P}\right)=\mathbf{1}_{L}
$$

(\forall) $P \in \operatorname{Spec}(\mathbf{Z}[\epsilon]), P / p \mathbf{Z}[\epsilon]$.
Proof. We know that: $p Z[\epsilon]=P_{1} \ldots P_{r}$, where $P_{i} \in \operatorname{Spec}(Z[\epsilon]), i=\overline{1, r}, r=\frac{\varphi(3)}{\operatorname{ord}_{\left(\mathbf{Z}_{3}^{*},\right)} \bar{p}}$.
We obtain that: if $p \equiv 1(\bmod 3)$ then $r=2$;
if $p \equiv 2(\bmod 3)$ then $r=1$.
The case I: $p \equiv 1(\bmod 3)$. We obtain that: $p Z[\epsilon]=P_{1} P_{2}$, where $P_{1}, P_{2} \in \operatorname{Spec}(Z[\epsilon])$.
The equality $p=x^{3}+l y^{3}$ is equivalent with:

$$
\begin{equation*}
p=(x+\sqrt{3} l y)(x+\epsilon \sqrt[3]{l} y)\left(x+\epsilon^{2} \sqrt[3]{l} y\right) \tag{2.1}
\end{equation*}
$$

Passing to the ideals in the ring A , in the equality (1), we have:

$$
\begin{equation*}
P_{1} A \cdot P_{2} A=(x+\sqrt[3]{l} y) A(x+\epsilon \sqrt[3]{l} y) A\left(x+\epsilon^{2} \sqrt[3]{l} y\right) A \tag{2.2}
\end{equation*}
$$

$N\left(P_{1}\right)=N\left(P_{2}\right)=p^{f}$, where f is the inertial degree of P_{1}, in the extension of fields $\mathbf{Q} \subset \mathbf{Q}(\epsilon)$.
From the Theorem 1.3., we have that efg $=[\mathbf{Q}(\epsilon): \mathbf{Q}]=2$. But $g=2, e=1$, therefore $f=1$ and $N\left(P_{1}\right)=N\left(P_{2}\right)=p$.
Using the Proposition 1.3. and the Definition 1.4., we have:

$$
\begin{equation*}
\left\{\frac{l}{P_{i}}\right\} \equiv l^{\frac{p-1}{3}}\left(\bmod P_{i}\right), i=\overline{1,2} \tag{2.3}
\end{equation*}
$$

But $\left\{\frac{l}{P_{i}}\right\} \in\left\{1, \epsilon, \epsilon^{2}\right\}, i=\overline{1,2}$. We can have:

$$
\begin{aligned}
& \left\{\frac{l}{P_{1}}\right\}=\epsilon^{c_{1}} \neq 1, \\
& \left\{\frac{l}{P_{2}}\right\}=\epsilon^{c_{2}} \neq 1
\end{aligned}
$$

or

$$
\begin{gathered}
\left\{\frac{l}{P_{1}}\right\}=1, \\
\left\{\frac{l}{P_{2}}\right\}=\epsilon^{c} \neq 1
\end{gathered}
$$

or

$$
\left\{\frac{l}{P_{1}}\right\}=\left\{\frac{l}{P_{2}}\right\}=1
$$

If $\left\{\frac{l}{P_{1}}\right\}=\epsilon^{c_{1}} \neq 1,\left\{\frac{l}{P_{2}}\right\}=\epsilon^{c_{2}} \neq 1$, using the Theorem 1.5., it results $P_{1} A, P_{2} A \in \operatorname{Spec}(A)$. This implies that the equality (2.2) is impossible. Therefore, cannot have $\left\{\frac{l}{P_{1}}\right\}=\epsilon^{c_{1}} \neq 1,\left\{\frac{l}{P_{2}}\right\}=\epsilon^{c_{2}} \neq 1$.
If $\left\{\frac{l}{P_{1}}\right\}^{\prime}=1,\left\{\frac{l}{P_{2}}\right\}=\epsilon^{c} \neq 1$, usind the Theorem 1.5. we obtain that $P_{1} A=P_{1}^{\prime} P_{2}^{\prime} P_{3}^{\prime}$, where $P_{i}^{\prime} \in \operatorname{Spec}(A)$ and $P_{2} A \in \operatorname{Spec}(A)$.

Passing to the ideals in the ring A , in the equality (2.1), we have:

$$
\begin{equation*}
P_{1}^{\prime} P_{2}^{\prime} P_{3}^{\prime}\left(P_{2} A\right)=(x+\sqrt[3]{l} y) A(x+\epsilon \sqrt[3]{l} y) A\left(x+\epsilon^{2} \sqrt[3]{l} y\right) A \tag{2.4}
\end{equation*}
$$

We know that p does not divide $x, l \equiv 1(\bmod 3)$ and we can prove easily that 3 does not divide $x+y$, g.c.d. $(x, y)=1$. According to the Proposition 1.7., the ideals

$$
(x+\sqrt[3]{l} y) A,(x+\epsilon \sqrt[3]{l} y) A,\left(x+\epsilon^{2} \sqrt[3]{l} y\right) A
$$

are comaximal ideals in pairs.
It is known that the Galois group $G(L / K)$ is a cyclic group and let $\sigma \in G(L / K)$, $\sigma: L \mapsto L, \sigma(\epsilon)=\epsilon, \sigma(\sqrt[3]{l})=\epsilon \sqrt[3]{l}$. We consider three cases.
(i) If $(x+y \sqrt[3]{l}) A \in \operatorname{Spec}(\mathrm{~A})$, using the Proposition 1.6., we obtain that

$$
\sigma((x+y \sqrt[3]{l}) A)=(x+y \epsilon \sqrt[3]{l}) A \in \operatorname{Spec}(A)
$$

and

$$
\sigma^{2}((x+y \sqrt[3]{l}) A)=\left(x+y \epsilon^{2} \sqrt[3]{l}\right) A \in \operatorname{Spec}(A)
$$

This implies that the equality (2.4) is impossible. Similarly we obtain that the equality (2.4) is impossible, in the case (ii) (when the ideal $\sigma((x+y \sqrt[3]{l}) A)$ is a product of two distinct prime ideals in the ring A) and in the case (iii) (when the ideal $\sigma((x+y \sqrt[3]{l}) A)$ is the 2-power of a prime ideal in the ring A$)$.
If $\left\{\frac{l}{P_{1}}\right\}=\left\{\frac{l}{P_{2}}\right\}=1$, using the congruences (2.3) and the fact that $P_{1}, P_{2} \in \operatorname{Spec}(\mathbf{Z}[\epsilon])$, we obtain that:

$$
1 \equiv l^{\frac{p-1}{3}}(\bmod p \mathbf{Z}[\epsilon])
$$

But $p, l \in \mathbf{N}^{*}$, therefore $1 \equiv l^{\frac{p-1}{3}}(\bmod p)$.
The last congruence is possible because $p \equiv 1(\bmod 3)$.
Since $\left\{\frac{l}{P_{1}}\right\}=\left\{\frac{l}{P_{2}}\right\}=1$, using the Proposition 2.8., we obtain that:

$$
\left(\frac{L / K}{P_{i}}\right)=\mathbf{1}_{L},(\forall) i=\overline{1,2}
$$

The case II: $p \equiv 2(\bmod 3)$. This implies that the ideal $p Z[\epsilon] \in \operatorname{Spec}(Z[\epsilon])$. Similarly with the case I we obtain that $N(p Z[\epsilon])=p^{2}$.

Using the Proposition 1.3. and the Definition 1.4., we have:

$$
\left\{\frac{l}{p Z[\epsilon]}\right\} \equiv l^{\frac{p^{2}-1}{3}}(\operatorname{modp} Z[\epsilon])
$$

Since p and l are prime distinct natural numbers, it results that $\left\{\frac{l}{p Z[\epsilon]}\right\} \neq 0$.
If $\left\{\frac{l}{p Z[\epsilon]}\right\}=\epsilon^{c} \neq 1$, hence $p A \in \operatorname{Spec}(A)$.
Passing to the ideals in the ring A , in the equality (1), we have:

$$
p A=(x+\sqrt[3]{l} y) A(x+\epsilon \sqrt[3]{l} y) A\left(x+\epsilon^{2} \sqrt[3]{l} y\right) A
$$

The last equality is impossible. Therefore, we cannot have

$$
\left\{\frac{l}{p Z[\epsilon]}\right\}=\epsilon^{c} \neq 1
$$

If $\left\{\frac{l}{p Z[\epsilon]}\right\}=1$ similar with the case I we obtain:

$$
1 \equiv l^{\frac{p^{2}-1}{3}}(\bmod p \mathbf{Z}[\epsilon])
$$

But $p, l^{\frac{p^{2}-1}{3}} \in \mathbf{N}^{*}$, therefore $1 \equiv l^{\frac{p^{2}-1}{3}}(\bmod p)$.
From $p \equiv 2(\bmod 3)$ results $(p-1) / \frac{p^{2}-1}{3}$. This implies that the last congruence is true. $\left\{\frac{l}{p Z[\epsilon]}\right\}=1$ implies that $\left(\frac{L / K}{p Z[\epsilon]}\right)^{3}=\mathbf{1}_{L}$.

References

[1] Albu T. and Ion D.I, Chapters of the algebraic theory of numbers (in Romanian), Ed. Academiei, Bucureşti, 1984
[2] Cohen H., A Course in Computational Algebraic Number Theory, Springer-Verlag, 1993
[3] Hilbert D., The theory of algebraic number fields (translated into Romanian), Ed. Corint, Bucureşti, 1998
[4] Ireland K. and Rosen M., A Classical Introduction to Modern Number Theory, Springer-Verlag, 1992
[5] Magioladitis M., Primes of the form $x^{2}+n y^{2}$, University of Duisburg-Essen, June 2004
[6] Savin D., About systems of Diophantine equations, Automation, Computers, Applied Mathematics, 13 (2004), 191-196.
[7] Savin D., Using the properties of Kummer fields in the proof on the diophantine equation $x^{4}-q^{4}=p y^{r}$, Conference on Combinatorics, Automata and Number Theory, University of Liege, Belgium, May 2006 (paper submitted)
[8] Ştefănescu M., Galois Theory (in Romanian), Ed. Ex Ponto, Constanta, 2002
[9] Stevenhagen P., Kummer Theory and Reciprocity Laws, Universiteit Leiden, 2005
"Ovidius" University of COnstanţa
Faculty of Mathematics and Informatics
Department of Mathematics
BD. Mamaia 124
900527 CONSTANTA, ROMANIA
E-mail address: savin.diana@univ-ovidius.ro
E-mail address: dianet72@yahoo.com

