CREATIVE MATH. & INF. **16** (2007), 63 - 69

Dedicated to Professor Ioan A. RUS on the occasion of his 70th anniversary

Artin symbol of the Kummer fields

DIANA SAVIN

ABSTRACT. Let *l* and *p* be odd prime distinct natural numbers, ξ be a primitive root of order *l* of unity. It is known that the field extension $\mathbf{Q}(\xi) \subset \mathbf{Q}(\xi, \sqrt[1]{p})$ is a Galois extension. In this article we study the Artin symbol in the Galois group $G(\mathbf{Q}(\xi, \sqrt[1]{p})/\mathbf{Q}(\xi))$.

1. INTRODUCTION

First, we recall some results we are using here:

Theorem 1.1. ([3]). Let $n \in N$, $n \ge 2$ and $Q \subset K$ be an extension of fields of degree [K : Q] = n, p be a prime natural number. There exist positive integers e_i , $i = \overline{1, g}$ such that

$$p\mathbf{Z}_K = \prod_{i=1}^{g} P_i^{e_i}$$

where all P_i , $i = \overline{1, g}$, are prime ideals above p and \mathbf{Z}_K is the ring of integers of \mathbf{K} over \mathbf{Q} .

Definition 1.1. ([3]). The integer e_i is called the ramification index of p at P_i . The degree f_i of the field extension defined by

$$f_i = [\mathbf{Z}_K / P_i : \mathbf{Z} / p\mathbf{Z}]$$

is called the **residual degree of** *p*.

Theorem 1.2. ([3]). We have the following formulas:

$$N(P_i) = p^{f_i},$$

and

$$\sum_{i=1}^{g} e_i f_i = n = [\mathbf{K} : \mathbf{Q}].$$

In the case when K/Q is a Galois extension, the result is more specific:

Theorem 1.3. ([3]). Assume that K/Q is a Galois extension. Then, for all P_i , the ramification indices e_i are equal (say to e), the residual degrees f_i are equal as well (say to f) and efg = n.

Received: 20.09.2006. In revised form: 19.02.2007.

²⁰⁰⁰ Mathematics Subject Classification. 11R18.

Key words and phrases. Kummer fields, cyclotomic fields.

Diana Savin

Proposition 1.1. ([5]). Let L/K be a Galois extension and \mathbf{Z}_K , \mathbf{Z}_l be the rings of algebraic integers of the fields K and L. Let $P \in Spec(\mathbf{Z}_K)$ such that the extension $K \subset L$ is unramified in P. Let P' be a prime ideal in the ring \mathbf{Z}_L such that $P'/P\mathbf{Z}_L$. Then there exists a unique automorphism $\sigma \in G(L/K)$ such that:

$$\sigma(x) \equiv x^{N(P)}(modP').$$

Definition 1.2. ([1]). The element σ of the Proposition 1.1. is denoted $\left(\frac{L/K}{P'}\right)$. If the extension K \subset L is Abelian, then $\left(\frac{L/K}{P'}\right)$ does not depend on $P' \in Spec(\mathbf{Z}_L)$, but only on $P = P' \cap \mathbf{Z}_K$ and it is denoted $\left(\frac{L/K}{P}\right)$

Definition 1.3. ([1]). Let $K \subset L$ be a Galois extension of fields, and let P' be a maximal ideal in the ring Z_L . The set

$$Z_{P^{'}} = \left\{ \tau \in G(L/K) / \tau(P^{'}) = P^{'} \right\}$$

is a subgroup in G(L/K) and it is called **the group of decomposition of** P' in the extension $K \subset L$.

Theorem 1.4. ([1]). Let $K \subset L$ be a Galois extension of fields, and let P be a maximal ideal *in the ring* Z_K .

i) For any $P' \in Max_P(\mathbb{Z}_L)$ we have $[G(L/K) : \mathbb{Z}_{P'}] = g_P$, where g_P is the number of prime ideals from \mathbb{Z}_L which divide P.

ii) If $K \subset L$ is a unramified in P and Abelian extension of fields and \mathbb{Z}_K/P is a finite field, then $\left(\frac{L/K}{P'}\right)$ generate the group $Z_{P'}$ and $|Z_{P'}| = f_{P'}$

Proposition 1.2. ([6]). Let *l* be a prime natural number $l \ge 3$ and ξ be a primitive root of unity of *l*- th order. A prime natural number $p \ge 3$ is a prime in the ring $Z[\xi]$ if and only if \overline{p} is generating the group ($\mathbf{Z}_{l}^{*}, \cdot$)

Let l be a odd prime natural number and ξ *be a primitive root of unity of order l.* $Z[\xi]$ *is the ring of integers of the cyclotomic field* $Q(\xi)$ *.*

Let p *be a prime natural number,* $p \neq l$ *, and* P *be a prime ideal in the ring* $Z[\xi]$ *,* P *dividing the ideal generated by* p*,* (p)*, in the ring* $Z[\xi]$ *.*

Proposition 1.3. ([3]). Let $\alpha \in Z[\xi]$, $\alpha \notin P$. There is an integer *c*, unique modulo *l*, such that $\alpha^{\frac{N(P)-1}{l}} \equiv \xi^c \pmod{P}$.

Definition 1.4. ([3]). The root of unity ξ^c is called the **power-character of the number** α with respect to the prime ideal *P* in the ring *Z* [ξ]. Following Hilbert([3]), we denote ξ^c by $\left\{\frac{\alpha}{P}\right\}$.

Proposition 1.4. ([3]). If $\alpha, \beta \in Z[\xi]$, (α), (β) are not divisible with P, then:

$$\left\{\frac{\alpha\beta}{P}\right\} = \left\{\frac{\alpha}{P}\right\} \cdot \left\{\frac{\beta}{P}\right\}.$$

Definition 1.5. ([3]). Let $\alpha \in Z[\xi]$. If the congruence $x^l \equiv \alpha \pmod{P}$ has solutions in the ring $Z[\xi]$, we say that α is a power-residue of order l with respect to the prime ideal P.

Proposition 1.5. ([5]). Let P be a prime ideal in the ring $Z[\xi]$, $P \neq (1 - \xi)$, $\alpha \in Z[\xi]$, α being relatively prime with P. Then α is a power-residue of order l with respect to the ideal P, if and only if $\left\{\frac{\alpha}{P}\right\} = 1$

Theorem 1.5. ([3]). Let ξ be a primitive root of *l*-order, of unity, where *l* is a prime natural number. A prime ideal *P* in the ring *Z* [ξ], is in the ring of integers in the Kummer field $Q(M;\xi)$ (where $M = \sqrt[4]{\mu}, \mu \in \mathbb{Z}$) in one of the situations:

i) is equal with the l-power of a prime ideal, if $\left\{ \frac{\mu}{P} \right\} = 0$,

ii) it decomposes in l different prime ideals, if $\left\{\frac{\mu}{P}\right\} = 1$ *,*

iii) is a prime ideal, if $\left\{\frac{\mu}{P}\right\} = a$ *root of order l of unity, different from* 1.

Proposition 1.6. ([8]). Let A be the ring of integers of the Kummer field $Q(\sqrt[4]{p};\xi)$ where p is a prime natural number, $p \neq l$ and ξ is a primitive root of order l of unity. Let G be the Galois group of the Kummer field $Q(\sqrt[4]{p};\xi)$ over $Q(\xi)$. Then G is an Abelian group and for any $\sigma \in G$ and for any $P \in Spec(A)$, we have $\sigma(P) \in Spec(A)$.

Proposition 1.7. ([7]). Let p and r be prime integers, $p \equiv 1 \pmod{r}$ and take ξ a primitive root of order r of the unity. If $Q(\xi; \sqrt[r]{p})$ is the Kummer field with the ring of integers A, y_1 and y_2 are integer numbers such that $gcd(y_1, y_2) = 1$, p does not divide y_2 , $m, n \in \{0, 1, ..., r - 1\}$, $y_2 - y_1$ is not divisible with r, then,

$$(y_2 - \xi^m \sqrt[r]{p} y_1) A and (y_2 - \xi^n \sqrt[r]{p} y_1) A$$

are comaximal ideals of A.

2. MAIN RESULTS

Proposition 2.8. Let p, q and l be prime distinct integers, \overline{q} is generating the group (\mathbf{Z}_l^*, \cdot) and take ξ a primitive root of order l of the unity. If $L = \mathbf{Q}(\xi; \sqrt[l]{p})$ is the Kummer field with the ring of integers A and $K = \mathbf{Q}(\xi)$, then:

$$\left(\frac{L/K}{q\mathbf{Z}[\xi]}\right)(\sqrt[l]{p}) = \left\{\frac{p}{q\mathbf{Z}[\xi]}\right\}\sqrt[l]{p}.$$

Proof. Since p and q are prime distinct natural numbers, this implies

$$\left\{\frac{p}{q\mathbf{Z}[\xi]}\right\} \neq 0.$$

The case I: If $\left\{\frac{p}{q\mathbf{Z}[\xi]}\right\} = 1$

We know that $\frac{L/K}{q\mathbf{Z}[\xi]}$ is the trivial automorphism, therefore

$$\left(\frac{L/K}{q\mathbf{Z}[\xi]}\right)(\sqrt[l]{p}) = \sqrt[l]{p} = \left\{\frac{p}{q\mathbf{Z}[\xi]}\right\}\sqrt[l]{p}.$$

The case II: If $\left\{\frac{p}{q\mathbf{Z}[\xi]}\right\} \neq 1$, we obtain that $f_{q\mathbf{Z}_L} = l$. We denote

$$\left(\frac{L/K}{q\mathbf{Z}[\xi]}\right)\left(\sqrt[l]{p}\right) = \xi^c \sqrt[l]{p}.$$

Uging Proposition 1.1. we have:

$$\left(\frac{L/K}{q\mathbf{Z}_L}\right)(\sqrt[4]{p}) \equiv \sqrt[4]{p}^{N(q\mathbf{Z}_L)}(modq\mathbf{Z}_L).$$

But $N(q\mathbf{Z}[\xi]) = N(q\mathbf{Z}_L)$, therefore

$$\xi^c \sqrt[l]{p} \equiv \sqrt[l]{p}^{N(q\mathbf{Z}[\xi])} (modq\mathbf{Z}_L).$$

The last congruence implies that:

$$\sqrt[l]{p}\left(\sqrt[l]{p}\right)^{N(q\mathbf{Z}[\xi])-1}-\xi^{c}\right)\equiv (modq\mathbf{Z}_{L}).$$

Since $\sqrt[l]{p} \in U(\mathbf{Z}_L)$ and $P \in Spec(\mathbf{Z}_L)$, it results that:

$$\sqrt[l]{p}^{N(q\mathbf{Z}[\xi])-1} \equiv \xi^c(modq\mathbf{Z}_L).$$

This equality is equivalent with:

$$\sqrt[l]{p^{\frac{q^{l-1}-1}{l}}} \equiv \xi^c(modq\mathbf{Z}_L).$$

But $\sqrt[l]{p^{\frac{q^{l-1}-1}{l}}} - \xi^c \in \mathbb{Z}[\xi]$ and $q\mathbb{Z}_L \cap \mathbb{Z}[\xi] = q\mathbb{Z}[\xi]$, therefore we obtain: $\sqrt[l]{p^{\frac{q^{l-1}-1}{l}}} \equiv \xi^c (modq\mathbb{Z}[\xi]).$

According to the Proposition 1.3. and Definion 1.4., we get that

$$\xi^c = \left\{ \frac{p}{q\mathbf{Z}[\xi]} \right\}.$$

From the previously proved, we obtain:

$$\left(\frac{L/K}{q\mathbf{Z}[\xi]}\right)(\sqrt[l]{p}) = \left\{\frac{p}{q\mathbf{Z}[\xi]}\right\}\sqrt[l]{p}.$$

_

We give now an application of the above result:

Proposition 2.9. Let p and l be odd prime distinct natural numbers, $l \equiv 1 \pmod{3}$, ϵ be a primitive root of order 3 of unity, $K = \mathbf{Q}(\epsilon)$ be the cyclotomic field. Let $L = \mathbf{Q}(\epsilon; \sqrt[3]{l})$ be the Kummer field with the ring of integers A. If there exist $x, y \in \mathbf{N}$, p does not divide x such that $p = x^3 + ly^3$, then the Artin symbol:

$$\left(\frac{L/K}{P}\right) = \mathbf{1}_L,$$

 $(\forall) P \in Spec(\mathbf{Z}[\epsilon]), P/p\mathbf{Z}[\epsilon].$

Proof. We know that: $pZ[\epsilon] = P_1...P_r$, where $P_i \in Spec(Z[\epsilon])$, $i = \overline{1, r}$, $r = \frac{\varphi(3)}{ord_{(\mathbf{Z}_3^*, \cdot)}\overline{p}}$. We obtain that: if $p \equiv 1 \pmod{3}$ then r = 2; if $p \equiv 2 \pmod{3}$ then r = 1.

The case I: $p \equiv 1 \pmod{3}$. We obtain that: $pZ[\epsilon] = P_1P_2$, where $P_1, P_2 \in Spec(Z[\epsilon])$.

The equality $p = x^3 + ly^3$ is equivalent with:

$$p = (x + \sqrt{3}ly)(x + \epsilon\sqrt[3]{ly})(x + \epsilon^2\sqrt[3]{ly}).$$
(2.1)

Passing to the ideals in the ring A, in the equality (1), we have:

$$P_1A \cdot P_2A = (x + \sqrt[3]{ly})A(x + \epsilon\sqrt[3]{ly})A(x + \epsilon^2\sqrt[3]{ly})A.$$
(2.2)

 $N(P_1) = N(P_2) = p^f$, where f is the inertial degree of P_1 , in the extension of fields $\mathbf{Q} \subset \mathbf{Q}(\epsilon)$.

From the Theorem 1.3., we have that $efg = [\mathbf{Q}(\epsilon) : \mathbf{Q}] = 2$. But g = 2, e = 1, therefore f = 1 and $N(P_1) = N(P_2) = p$.

Using the Proposition 1.3. and the Definition 1.4., we have:

$$\left\{\frac{l}{P_i}\right\} \equiv l^{\frac{p-1}{3}} (modP_i), i = \overline{1, 2}.$$
(2.3)

But $\left\{\frac{l}{P_i}\right\} \in \{1, \epsilon, \epsilon^2\}$, $i = \overline{1, 2}$. We can have:

$$\left\{\frac{l}{P_1}\right\} = \epsilon^{c_1} \neq 1,$$
$$\left\{\frac{l}{P_2}\right\} = \epsilon^{c_2} \neq 1$$
$$\left\{\frac{l}{P_1}\right\} = 1,$$
$$\left\{\frac{l}{P_2}\right\} = \epsilon^c \neq 1$$
$$\left\{\frac{l}{P_2}\right\} = \left\{\frac{l}{P_2}\right\} = 1.$$

or

or

Diana Savin

If $\left\{\frac{l}{P_1}\right\} = \epsilon^{c_1} \neq 1$, $\left\{\frac{l}{P_2}\right\} = \epsilon^{c_2} \neq 1$, using the Theorem 1.5., it results $P_1A, P_2A \in Spec(A)$. This implies that the equality (2.2) is impossible. Therefore, cannot have $\left\{\frac{l}{P_1}\right\} = \epsilon^{c_1} \neq 1$, $\left\{\frac{l}{P_2}\right\} = \epsilon^{c_2} \neq 1$. If $\left\{\frac{l}{P_1}\right\} = 1$, $\left\{\frac{l}{P_2}\right\} = \epsilon^c \neq 1$, usind the Theorem 1.5. we obtain that $P_1A = P'_1P'_2P'_3$, where $P'_i \in Spec(A)$ and $P_2A \in Spec(A)$.

Passing to the ideals in the ring A, in the equality (2.1), we have:

$$P_{1}'P_{2}'P_{3}'(P_{2}A) = (x + \sqrt[3]{l}y)A(x + \epsilon\sqrt[3]{l}y)A(x + \epsilon^{2}\sqrt[3]{l}y)A.$$
 (2.4)

We know that p does not divide x, $l \equiv 1 \pmod{3}$ and we can prove easily that 3 does not divide x + y, g.c.d.(x, y) = 1. According to the Proposition 1.7., the ideals

 $(x + \sqrt[3]{ly})A, (x + \epsilon \sqrt[3]{ly})A, (x + \epsilon^2 \sqrt[3]{ly})A$

are comaximal ideals in pairs.

It is known that the Galois group G(L/K) is a cyclic group and let $\sigma \in G(L/K)$, $\sigma:L \mapsto L, \sigma(\epsilon) = \epsilon, \sigma(\sqrt[3]{l}) = \epsilon \sqrt[3]{l}$. We consider three cases.

(i) If $\left(x + y\sqrt[3]{l}\right) A \in \text{Spec}(A)$, using the Proposition 1.6., we obtain that

$$\sigma\left(\left(x+y\sqrt[3]{l}\right)A\right) = \left(x+y\epsilon\sqrt[3]{l}\right)A \in Spec(A)$$

and

$$\sigma^{2}\left(\left(x+y\sqrt[3]{l}\right)A\right) = \left(x+y\epsilon^{2}\sqrt[3]{l}\right)A \in Spec(A).$$

This implies that the equality (2.4) is impossible. Similarly we obtain that the equality (2.4) is impossible, in the case (ii) (when the ideal $\sigma\left(\left(x+y\sqrt[3]{l}\right)A\right)$ is a product of two distinct prime ideals in the ring A) and in the case (iii) (when the ideal $\sigma\left(\left(x+y\sqrt[3]{l}\right)A\right)$ is the 2-power of a prime ideal in the ring A).

If $\left\{\frac{l}{P_1}\right\} = \left\{\frac{l}{P_2}\right\} = 1$, using the congruences (2.3) and the fact that $P_1, P_2 \in Spec(\mathbf{Z}[\epsilon])$, we obtain that:

$$1 \equiv l^{\frac{p-1}{3}}(modp\mathbf{Z}[\epsilon]).$$

But $p, l \in \mathbb{N}^*$, therefore $1 \equiv l^{\frac{p-1}{3}}(modp)$.

The last congruence is possible because $p \equiv 1 \pmod{3}$.

Since $\left\{\frac{l}{P_1}\right\} = \left\{\frac{l}{P_2}\right\} = 1$, using the Proposition 2.8., we obtain that:

$$\left(\frac{L/K}{P_i}\right) = \mathbf{1}_L, \ (\forall) \ i = \overline{1,2}$$

The case II: $p \equiv 2 \pmod{3}$. This implies that the ideal $pZ[\epsilon] \in Spec(Z[\epsilon])$. Similarly with the case I we obtain that $N(pZ[\epsilon]) = p^2$.

68

Using the Proposition 1.3. and the Definition 1.4., we have:

$$\left\{\frac{l}{pZ[\epsilon]}\right\} \equiv l^{\frac{p^2-1}{3}}(modpZ[\epsilon])$$

Since *p* and *l* are prime distinct natural numbers, it results that $\left\{\frac{l}{nZ[\epsilon]}\right\} \neq 0$.

If $\left\{\frac{l}{pZ[\epsilon]}\right\} = \epsilon^c \neq 1$, hence $pA \in Spec(A)$. Passing to the ideals in the ring A, in the equality (1), we have:

$$pA = (x + \sqrt[3]{ly})A(x + \epsilon\sqrt[3]{ly})A(x + \epsilon^2\sqrt[3]{ly})A.$$

The last equality is impossible. Therefore, we cannot have

$$\left\{\frac{l}{pZ[\epsilon]}\right\} = \epsilon^c \neq 1.$$

If $\left\{\frac{l}{pZ[\epsilon]}\right\} = 1$ similar with the case I we obtain:

$$\equiv l^{\frac{p^2-1}{3}}(modp\mathbf{Z}[\epsilon]).$$

But p, $l^{\frac{p^2-1}{3}} \in \mathbf{N}^*$, therefore $1 \equiv l^{\frac{p^2-1}{3}}(modp)$. From $p \equiv 2(mod3)$ results $(p-1)/\frac{p^2-1}{3}$. This implies that the last congruence is true. $\left\{\frac{l}{pZ[\epsilon]}\right\} = 1$ implies that $\left(\frac{L/K}{pZ[\epsilon]}\right) = \mathbf{1}_L$.

REFERENCES

- Albu T. and Ion D.I, Chapters of the algebraic theory of numbers (in Romanian), Ed. Academiei, Bucureşti, 1984
- [2] Cohen H., A Course in Computational Algebraic Number Theory, Springer-Verlag, 1993
- [3] Hilbert D., The theory of algebraic number fields (translated into Romanian), Ed. Corint, Bucureşti, 1998
- [4] Ireland K. and Rosen M., A Classical Introduction to Modern Number Theory, Springer-Verlag, 1992
- [5] Magioladitis M., *Primes of the form* $x^2 + ny^2$, University of Duisburg-Essen, June 2004
- [6] Savin D., About systems of Diophantine equations, Automation, Computers, Applied Mathematics, 13 (2004), 191-196.
- [7] Savin D., Using the properties of Kummer fields in the proof on the diophantine equation $x^4 q^4 = py^r$, Conference on Combinatorics, Automata and Number Theory, University of Liege, Belgium, May 2006 (paper submitted)
- [8] Ştefănescu M., Galois Theory (in Romanian), Ed. Ex Ponto, Constanta, 2002
- [9] Stevenhagen P., Kummer Theory and Reciprocity Laws, Universiteit Leiden, 2005

"OVIDIUS" UNIVERSITY OF CONSTANȚA FACULTY OF MATHEMATICS AND INFORMATICS DEPARTMENT OF MATHEMATICS BD. MAMAIA 124 900527 CONSTANTA, ROMANIA *E-mail address*: savin.diana@univ-ovidius.ro *E-mail address*: dianet72@yahoo.com