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On the convergence of a sequence generated by an
integral

Marcelina Mocanu and Adrian Sandovici

Abstract. Some results concerning the convergence of some sequences generated by integrals

are presented. Immediate applications are also given.

1. Introduction

The aim of this note is to present some results which give sufficient conditions
for the convergence of some sequences determined by integrals. The following vell
known problem is an example for the applicability of our results.

Problem 1.1. Let f : [0, 1] → R a continuous function. Prove that

lim
n→∞

∫ 1

0

f (xn)
1 + x

dx = f (0) · ln 2.

We need the following known result, whose proof is included for the completeness.

Lemma 1.1. Let f : [c, d] → R be a differentiable function with bounded derivative
on [c, d]. There exists a sequence of polynomial functions (Pm)m≥1 such that
a) Pm → f uniformly on [c, d], that is limm→∞ supt∈[c,d] |Pm (t)− f (t)| = 0;
b) (P ′m)m≥1 is a sequence of equally bounded functions on [c, d], that is ∃ A > 0
such that supt∈[c,d] |P ′m (t)| ≤ A, ∀m ≥ 1.

Proof. Assume that [c, d] = [0, 1]. Let Bnf be the Bernstein polynomial of order
n associated to the function f (see [1, 2])

Bnf(x) =
n∑

k=0

Ck
nxk (1− x)n−k

f

(
k

n

)
.

Denote supt∈[0,1] |f ′ (t)| = A. It is known that Bnf → f uniformly on [0, 1], for any
continuous function f : [0, 1] → R. Moreover, for any differentiable function with
bounded derivative on [0, 1], ((Bnf)′)n≥1 is a sequence of equally bounded functions
on
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[0, 1]. Indeed,

(Bnf)′(x) =
n∑

k=1

kCk
nxk−1 (1− x)n−k

f

(
k

n

)

−
n−1∑
k=0

(n− k)Ck
nxk (1− x)n−k−1

f

(
k

n

)

= n
n∑

k=1

Ck−1
n−1x

k−1 (1− x)n−k
f

(
k

n

)

−n
n−1∑
k=0

Ck
n−1x

k (1− x)n−k−1
f

(
k

n

)

= n
n−1∑
k=0

Ck
n−1x

k (1− x)n−k−1

[
f

(
k + 1

n

)
− f

(
k

n

)]
.

On the other hand, there exists cnk ∈
(

k
n , k+1

n

)
such that:

n

[
f

(
k + 1

n

)
− f

(
k

n

)]
= n · f ′ (cnk)

(
k + 1

n
− k

n

)
= f ′ (cnk)

Therefore, for any n ≥ 1

|(Bnf)′(x)| ≤
n−1∑
k=0

Ck
n−1x

k (1− x)n−k−1

∣∣∣∣n [
f

(
k + 1

n

)
− f

(
k

n

)]∣∣∣∣
=

n−1∑
k=0

Ck
n−1x

k (1− x)n−k−1 |f ′ (cnk)|

≤ A ·
n−1∑
k=0

Ck
n−1x

k (1− x)n−k−1 = A · (1− x + x)n−1 = A.

It follows that we can consider Pm(x) = Bm(x), ∀x ∈ [0, 1], and in the general case,
Pm(x) = Bm

(
x−c
d−c

)
, ∀x ∈ [c, d]. �

2. Main results

Our main results are given in the following three Propositions.

Proposition 2.1. Let f : [c, d] → R be a continuous function, λn : [a, b] → [c, d],
n ∈ N a sequence of continuous functions, and let g : [a, b] → R a Riemann
integrable function. Assume that there exists x0 ∈ [a, b] such that the sequence
(λn (x0))n≥1 converges, and the sequence

αn :=
∫ b

a

|λn (x)− λn (x0)| dx,
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converges to 0. Then

lim
n→∞

∫ b

a

f (λn (x)) · g (x) dx = f
(

lim
n→∞

λn (x0)
)
·
∫ b

a

g (x) dx.

Proof. If limn→∞ λn (x0) is denoted by l, then l ∈ [c, d]. Since g is Riemann
integrable it follows that |g| is also Riemann integrable and g is bounded. Denote
M = supx∈[a,b] |g(x)|. Assume that f is a Lipschitz function, namely there exists
L > 0 such that

|f(x)− f(y)| ≤ L |x− y| , ∀x, y ∈ [c, d] .

We have the following estimates∣∣∣∣∣
∫ b

a

f (λn (x)) · g (x) dx−
∫ b

a

f (λn (x0)) · g (x) dx

∣∣∣∣∣ (1)

≤
∫ b

a

|f (λn (x))− f (λn (x0))| · |g (x)| dx

≤ L

∫ b

a

|λn (x)− λn (x0)| · |g (x)| dx

≤ ML · αn,

and, ∣∣∣∣∣
∫ b

a

f (λn (x0)) · g (x) dx− f(l) ·
∫ b

a

g (x) dx

∣∣∣∣∣ (2)

≤ L · |λn (x0)− l| ·
∫ b

a

|g (x)| dx

≤ (b− a)ML · |λn (x0)− l| .

The relations (1) and (2) and the triangle inequality lead to∣∣∣∣∣
∫ b

a

f (λn (x)) · g (x) dx− f(l) ·
∫ b

a

g (x) dx

∣∣∣∣∣ (3)

≤ ML · [αn + (b− a) · |λn (x0)− l|] .

Clearly, the right hand side of (3) converges to 0 when n →∞.
Thus the statement is proved when f is a Lipschitz function. In the general case,

the idea is to approximate the function f with a Lipschitz function, uniformly on
[c, d].

Applying the Weierstrass’s uniform approximation theorem (see for instance The-
orem 7.1 from [1], pp. 88–89 or Theorem 2 from [2], pp. 214-216), it follows that
there exists a L(ε) – Lipschitz function h : [c, d] → R such that

|f(x)− h(x)| < ε, ∀x ∈ [c, d] .
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It is easily seen that∣∣∣∣∣
∫ b

a

f (λn (x)) · g (x) dx−
∫ b

a

h (λn (x)) · g (x) dx

∣∣∣∣∣ (4)

≤ ε

∫ b

a

|g (x)| dx

≤ (b− a)Mε,

and, ∣∣∣∣∣f(l)
∫ b

a

g (x) dx− h(l)
∫ b

a

g (x) dx

∣∣∣∣∣ (5)

< ε

∣∣∣∣∣
∫ b

a

g (x) dx

∣∣∣∣∣
≤ ε

∫ b

a

|g (x)| dx

≤ (b− a)Mε.

From (4), (5) and from the inequality (3) applied to the function h we get:∣∣∣∣∣
∫ b

a

f (λn (x)) · g (x) dx− f(l)
∫ b

a

g (x) dx

∣∣∣∣∣
≤ 2(b− a)Mε + ML(ε) · [αn + (b− a) · |λn (x0)− l|] .

By hypothesis, there exists N(ε) ∈ N such that

αn + (b− a) · |λn (x0)− l| < ε

ML(ε)
, ∀n ≥ N(ε).

Therefore ∣∣∣∣∣
∫ b

a

f (λn (x)) · g (x) dx− f(l)
∫ b

a

g (x) dx

∣∣∣∣∣ < ε,

for all n ≥ N

(
ε

2(b− a)M + 1

)
. Thus the proof is completed. �

Remark 2.1. If it is further assumed that the sequence of continuous functions
(λn)n∈N converges almost everywhere on [a, b], then Proposition 2.1 is a consequence
of Lebesgue dominated convergence theorem (see Theorem 4.7. from [1], p. 140).
Moreover, the Riemann integrals from the statement of Proposition 2.1 are equal
with the corresponding Lebesgue integrals.

Proof. Denote limn→∞ λn (x) by λ(x) whenever this limit exists, i.e. for almost
every x ∈ [a, b], and set λ(x0) = limn→∞ λn (x0). The Lebesgue integrable functions

Fn(x) := f (λn (x)) · g (x) ,

are uniformly bounded on [a, b], since

|Fn(x)| ≤ M · sup
y∈[c,d]

|f(y)| < ∞,
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and
lim

n→∞
Fn(x) = f (λ (x)) · g (x) =: F (x)

for almost every x ∈ [a, b]. From the dominated convergence theorem it follows that
F is Lebesgue integrable and

lim
n→∞

∫ b

a

Fn (x) dµ =
∫ b

a

F (x) dµ.

Clearly, |λn| ≤ 2(d − c) on [a, b]. Applying the dominated convergence theorem to
the sequence (λn)n∈N it follows that λ is a Lebesgue integrable function, and

0 = lim
n→∞

αn = lim
n→∞

∫ b

a

|λn (x)− λn (x0)| dx

=
∫ b

a

lim
n→∞

|λn (x)− λn (x0)| dx

=
∫ b

a

|λ (x)− λ (x0)| dx.

This implies λ (x) = λ (x0) almost everywhere on [a, b], and∫ b

a

F (x) dµ =
∫ b

a

f (λ (x)) · g (x) dµ

=
∫ b

a

f (λ (x0)) · g (x) dµ

= f (λ (x0)) ·
∫ b

a

g (x) dµ.

Therefore limn→∞
∫ b

a
f (λn (x)) · g (x) dx = f (λ (x0)) ·

∫ b

a
g (x) dx. �

Using Remark 2.1 we can give an alternative proof of Proposition 2.1. Indeed,
the assumption limn→∞ αn = 0 shows that the sequence

µn : [a, b] → R, µn(x) := λn(x)− λn(x0),

is convergent to zero in L1([a, b]). Then this sequence has a subsequence

(µnk
)k∈N

which is convergent to zero almost everywhere on [a, b]. According to Remark 2.1,
we get

lim
k→∞

∫ b

a

f (λnk
(x)) · g (x) dx = f

(
lim

n→∞
λn (x0)

)
·
∫ b

a

g (x) dx.

The claim of Proposition 2.1 will be proved if we check that the sequence(∫ b

a
f (λn (x)) · g (x) dx

)
n∈N

is Cauchy. Let ε > 0. Using the same notations as

in the proof of Proposition 2.1, we see that∣∣∣∣∣
∫ b

a

h (λn(x)) g(x)dx−
∫ b

a

h (λm(x)) g(x)dx

∣∣∣∣∣
≤ ML(ε) [αn + αm + (b− a) |λn(x0)− λm(x0)|] ,
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whence the sequence
(∫ b

a
h (λn (x)) · g (x) dx

)
n∈N

is Cauchy. Furthermore, using

(4) we get ∣∣∣∣∣
∫ b

a

f (λn(x)) g(x)dx−
∫ b

a

f (λm(x)) g(x)dx

∣∣∣∣∣
≤ ML(ε) [αn + αm + (b− a) |λn(x0)− λm(x0)|] + 2(b− a)Mε.

Since (λn(x0))n∈N is a Cauchy sequence and limn→∞ αn = 0, the last inequality
shows that the sequence

(∫ b

a
f (λn (x)) · g (x) dx

)
n∈N

is Cauchy. The proof is now

completed. �

Example 2.1. In the following cases it is known that the condition

lim
n→∞

αn = 0,

holds (with the notations from Proposition 2.1).

(1) [a, b] = [0, 1], λn(x) = xn, x0 = 0, (or λn(x) = (1 − x)n, x0 = 1),
[c, d] = [0, 1];

(2) [a, b] = [−1, 1], λn(x) = (1− x2)n, x0 = 1, [c, d] = [0, 1];

(3) [a, b] = [0, π/2], λn(x) = sinn x, x0 = 0, [c, d] = [0, 1];

(4) [a, b] = [0, π/2], λn(x) = cosn x, x0 = π/2, [c, d] = [0, 1].

Proposition 2.1 implies then, whenever f is continuous on [c, d] and g is Riemann
integrable on [a, b]

(1) limn→∞
∫ 1

0
f (xn) · g (x) dx = f (0) ·

∫ 1

0
g (x) dx ;

(2) limn→∞
∫ 1

−1
f

(
(1− x2)n

)
· g (x) dx = f (0) ·

∫ 1

0
g (x) dx;

(3) limn→∞
∫ π/2

0
f (sinn x) · g (x) dx = f (0) ·

∫ π/2

0
g (x) dx .

(4) limn→∞
∫ π/2

0
f (cosn x) · g (x) dx = f (0) ·

∫ π/2

0
g (x) dx .

Of course, we can build new examples from the former ones adding to each sequence
of functions (λn)n>1 a convergent sequence of constants (cn)n∈N and assuming now
that

[c, d] =
[

inf
n∈N

cn, 1 + sup
n∈N

cn

]
.

A direct application of Proposition 2.1 is the following

Problem 2.1. Let α ∈ (0, 1) and In(α) :=
∫ α

0
ln(1 + x + ... + xn−1)dx for every

n ≥ 2. Calculate limn→∞ In(α) .
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Proof : Denote I =
α∫
0

ln(1− x)dx. We have In(α) + I =
α∫
0

ln(1− xn)dx. We may

apply Proposition 2.1 for [a, b] = [0, α], [c, d] = [1 − α, 1], λn(x) = 1 − xn, x0 = 0,
f(x) = lnx for every x ∈ [1− α, 1] and g ≡ 1. Then limn→∞(In(α) + I) = 0, hence
limn→∞ In(α) = −I = α− (α− 1) ln(1− α). �

Proposition 2.2. Let f : [c, d] → R be a differentiable function with bounded
derivative, g : [a, b] → R a Riemann integrable function which admits a primitive,
(λn)n≥1, λn : [a, b] → [c, d], n ∈ N a sequence of differentiable functions with
integrable derivatives on [a, b]. If there exists a sequence of real, nonzero numbers
(αn)n≥1, such that

lim
n→∞

αn ·
∫ b

a

|λ′n (x)| dx = 0,

and there exists l ∈ [c, d] such that

lim
n→∞

αn (λn (a)− l) = 0,

then

lim
n→∞

αn

∫ b

a

[f (λn (x))− f (l)] g(x)dx = 0.

Proof. Let G be a primitive of the function g on [a, b]. Next we will prove that
the sequence (An)n≥1 given by An := αn

∫ b

a
[f (λn (x))− f (l)] g(x)dx tends to 0 in

the case when for any n ≥ 1, f ′ ◦λn is a Riemann integrable function on [a, b]. Then
(f ◦ λn)′ = (f ′ ◦ λn) (λn)′ is integrable on [a, b] and

An = αn [f (λn (b))− f (l)]G(b)− αn [f (λn (a))− f (l)]G(a)

−αn

∫ b

a

f ′ (λn (x)) · (λn)′ (x) ·G(x)dx

Let G be the primitive of g such that G(b) = 0. Then

An = −Bn − Cn ·G(a),

where

Bn := αn

∫ b

a

f ′ (λn (x)) · (λn)′ (x) ·G(x)dx,

and
Cn := αn [f (λn (a))− f (l)] .

Clearly,

|Bn| ≤ sup
t∈[c,d]

|f ′(t)| · sup
x∈[a,b]

|G(x)| · |αn| ·
∫ b

a

∣∣(λn)′ (x)
∣∣ dx.

Therefore limn→∞Bn = 0. If λn (a) 6= l, it follows from Lagrange’s theorem that
there exists ξn between λn (a) and l, such that

f (λn (a))− f (l) = f ′(ξn) · (λn (a)− l) .

Thus,
|f (λn (a))− f (l)| ≤ sup

t∈[c,d]

|f ′(t)| · |λn (a)− l| , ∀n ≥ 1,
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which together with hypothesis leads to limn→∞ Cn = 0.
We have proved that if f ′ ◦ λn, n ≥ 1 are Riemann integrable functions on [a, b],

then limn→∞An = 0. For the proof of the general case we will use Lemma 1.1. Let
P be a polynomial function. Then

|An(f)−An(P )| =

∣∣∣∣∣αn

∫ b

a

[f (λn (x))− f (l)] g(x)dx (6)

− αn

∫ b

a

[P (λn (x))− P (l)] g(x)dx

∣∣∣∣∣
≤ |αn| ·

∫ b

a

|f (λn (x))− P (λn (x))| · |g(x)| dx

+ |αn| ·
∫ b

a

|f (l)− P (l)| · |g(x)| dx

≤ 2 · |αn| · sup
t∈[c,d]

|f(t)− P (t)| ·
∫ b

a

|g(x)| dx.

From the proof of the particular case it follows that:

|An(P )| ≤ sup
t∈[c,d]

|P ′(t)| · {|G(a)| · |αn (λn (a)− l)| (7)

+ sup
x∈[a,b]

|G(x)| · |αn| ·
∫ b

a

∣∣(λn)′ (x)
∣∣ dx

}
.

From (6) and (7) we deduce that:

|An(f)| ≤ 2 · |αn| ·
∫ b

a

|g(x)| dx · sup
t∈[c,d]

|f(t)− P (t)|

+ sup
t∈[c,d]

|P ′(t)| · sup
x∈[a,b]

|G(x)| · {|αn (λn (a)− l)|

+ |αn| ·
∫ b

a

∣∣(λn)′ (x)
∣∣ dx

}
.

Let P be one of the polynomials Pm from Lemma 1.1. Then supt∈[c,d] |P ′(t)| ≤ A.

We notice that it suffices to study the case when G 6= 0 and
∫ b

a
|g(x)| dx 6= 0,

otherwise the statement of the proposition is obvious. Consider ε > 0. Then there
exists N(ε) such that,

|αn (λn (a)− l)|+ |αn| ·
∫ b

a

∣∣(λn)′ (x)
∣∣ dx <

ε

2
A · sup

x∈[a,b]

|G(x)| ,

∀n ≥ N(ε). Therefore, ∀n ≥ N(ε) and ∀m ≥ 1 it follows

|An (f)| < 2 · |αn| ·
∫ b

a

|g(x)| dx · sup
t∈[c,d]

|f(t)− Pm(t)|+ ε

2
. (8)
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For any n there exists m = m(n) such that

sup
t∈[c,d]

|f(t)− Pm(t)| < ε

4 |αn| ·
∫ b

a
|g(x)| dx

.

For all n ≥ N(ε), and for m = m(n) the inequality (8) implies

|An (f)| < ε

2
+

ε

2
= ε.

Therefore, for any n ≥ N(ε) we have |An (f)| < ε. This completes the proof. �

Problem 2.2. Let f : [0, 1] → R be a differentiable function with bounded deriva-
tive, g : [0, 1] → R a Riemann integrable function which admits a primitive, and let
P be a polynomial. Then

lim
n→∞

ln(P (n))
∫ 1

0

[
f

(
ln(1 + nx)

n

)
− f (0)

]
g(x)dx = 0.

Proof. The statement is a direct consequence of Proposition 2.2 if we choose

l = 0, λn : [0, 1] → [0, 1], λn(x) :=
ln(1 + nx)

n
, n ∈ N \ 0 and the sequence (αn)n≥1

be given by αn := ln(P (n)). �
The last result of this note is the following:

Proposition 2.3. Let f : [c, d] → R be a continuous function , differentiable at
some point y0 ∈ [c, d], let g : [a, b] → R be a Riemann integrable function, continuous
at b, with g(b) = 0. Let (λn)n≥1, λn : [a, b] → [c, d], n ∈ N, be a sequence of
continuous functions with λn(a) = y0 and λn(x) 6= y0 for x 6= a, and let (αn)n≥1

be a sequence of real numbers with αn > 0, ∀n ≥ 1. Assume that the folowing
conditions are satisfied

(1) limn→∞ αn ·
∫ δ

a
|λn(x)− y0| dx = 0, ∀δ ∈ (a, b);

(2) There exists a positive constant k such that ∀δ ∈ (a, b) there exists n0,δ ∈ N
such that the inequality

αn ·
∫ b

δ

|λn(x)− y0| dx ≤ k,

holds ∀n ≥ n0,δ.

Then

lim
n→∞

αn

∫ b

a

(f(λn(x))− f(y0)) · g(x)dx

= f ′(y0) · lim
n→∞

αn ·
∫ b

a

(λn(x)− y0) · g(x)dx = 0.

Proof. Consider ϕ : [c, d] → R,

ϕ(x) =

{
f(y)−f(y0)

y−y0
, y ∈ [c, d]\{y0}

f ′(y0) , y = y0
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Notice that ϕ is a continuous function on [c, d]. We have :

αn ·
∫ b

a

(f(λn(x))− f(y0)) · g(x)dx =

= αn

∫ b

a

ϕ (λn(x)) · (λn(x)− y0) · g(x)dx.

There exists m > 0 such that |ϕ(y)| ≤ m, ∀y ∈ [c, d]. Denote

M = sup
x∈[a,b]

g(x).

Consider ε > 0. There exists δ0 ∈ (a, b) such that |g(x)| < ε
2km , ∀x ∈ [δ0, b].

Consequently, there exists n0,δ0 ∈ N such that for any n ≥ n0,δ0 the relation∣∣∣∣∣αn

∫ b

δ0

ϕ(λn(x)) · (λn(x)− y0) · g(x)dx

∣∣∣∣∣ (9)

≤ αn

∫ b

δ0

|ϕ (λn(x))| · |λn(x)− y0| · |g(x)| dx

≤ m · ε

2km
· αn ·

∫ b

δ0

|λn(x)− y0| dx <
ε

2

holds. On the other hand, there exists n1 ∈ N such that for any n ≥ n1:∣∣∣∣∣αn

∫ δ0

a

ϕ(λn(x)) · (λn(x)− y0) · g(x)dx

∣∣∣∣∣ (10)

≤ αn

∫ δ0

a

|ϕ(λn(x))| · |λn(x)− y0| · |g(x)| dx

≤ m ·M · αn

∫ δ0

a

|λn(x)− y0| dx <
ε

2

Using (9) – (10) it follows that∣∣∣∣∣αn

∫ b

a

(f(λn(x))− f(y0)) · g(x)dx

∣∣∣∣∣ < ε, ∀n ≥ max(n0,δ0 , n1).

Therefore the proof is completed. �

Problem 2.3. Let f : [0, 1] → R be a continuous function , differentiable at 0, let
g : [0, 1] → R be a Riemann integrable function, continuous at 1, with g(1) = 0,
and let (αn)n≥1 be a sequence of positive numbers such that the sequence

(
αn

n

)
n≥1

is bounded. Then

lim
n→∞

αn

∫ 1

0

(f(xn)− f(0)) · g(x)dx

= f ′(0) · lim
n→∞

αn

∫ 1

0

xn · g(x)dx = 0.

Proof. Clearly, with y0 = 0 and λn : [0, 1] → [0, 1], λn(x) := xn, n ∈ N \ {0}, the
statement is a direct consequence of Proposition 2.3. �
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3. Conclusions

The results presented in Section 2 can generate a lot of interesting problems. We
list below three problems which are in fact direct applications of Propositions 2.1,
2.2 and 2.3, respectively.

Problem 3.1. Let α ∈ (0, 1) and Jn(α) :=
∫ α

0
ln(1 + sin x + ... + sinn−1x)dx for

every n ≥ 2. Calculate limn→∞ Jn(α) .

Problem 3.2. Let f : [0, 1] → R be a differentiable function with bounded
derivative, g : [0, 1] → R a Riemann integrable function which admits a primitive,
β ∈ (0, 1) and let a, b and c three real constants such that

ln(1 + a + bn + cn2) ≤ n, ∀n ≥ N \ {0}.

Then

lim
n→∞

nβ ·
∫ 1

0

[
f

(
ln(1 + ax2 + bxn + cn2)

n

)
− f (0)

]
g(x)dx = 0.

Problem 3.3. Let f : [0, 1] → R be a continuous function , differentiable at 0, let
g : [0, 1] → R be a Riemann integrable function, continuous at 1, with g(1) = 0,
and let (αn)n≥1 be a sequence of positive numbers such that the sequence

(
αn

n

)
n≥1

is bounded.
Then

lim
n→∞

αn

∫ 1

0

(f(sinnx)− f(0)) · g(x)dx

= f ′(0) · lim
n→∞

αn

∫ 1

0

sinnx · g(x)dx = 0.
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Romania

E-mail address: marcim@ub.ro

Adrian Sandovici

University of Groningen
Department of Mathematics and

Computing Science

P.O. Box 800, 9700 AV Groningen
The Netherlands
E-mail address: V.A.Sandovici@rug.nl


