Let \mathbb{K}  be a complete ultrametric algebraically closed field and \mathcal{A}\left( \mathbb{K}\right) be the \mathbb{K}-algebra of entire functions on \mathbb{K}. For any p-adic entire functions f\in \mathcal{A}\left( \mathbb{K}\right) and r>0, we denote by |f|\left( r\right) the number \sup \left\{|f\left( x\right) |:|x|=r\right\} where \left\vert \cdot \right\vert (r) is a multiplicative norm on \mathcal{A}\left( \mathbb{K}\right). In this paper we study some growth properties of composite p-adic entire functions on the basis of their relative \left( p,q\right)\varphi order, relative \left( p,q\right)\varphi type and relative \left(p,q\right)\varphi weak type where p, q are any two positive integers and \varphi \left( r\right) : [0,+\infty)\rightarrow (0,+\infty ) is a non-decreasing unbounded function of r.

 

Additional Information

Author(s)

Biswas, Tanmay