In this paper, we develop criteria for the existence of multiple positive solutions for second order Sturm-Liouville boundary value problem,

    \[u''+k^2u+f(t,u)=0, ~~0\leq t\leq 1,\]

 

    \[a u(0)-bu'(0)=0 \text{~and~} c u(1)+d u'(1)=0,\]

where k\in\bigg(0, \dfrac{\pi}{2}\bigg) is a constant, by an application of Avery–Henderson fixed point theorem.

 

 

Additional Information

Author(s)

 Prasad, K. R., Sreedhar, N., Wesen, L. T.