Placeholder

Generalized distances and their associate metrics. Impact on fixed point theory


Vasile BerindeMitrofan Choban


Abstract

creative_2013_22_1_023_032_abstract

In the last years there is an abundance of fixed point theorems in literature, most of them established in various generalized metric spaces. Amongst the generalized spaces considered in those papers, we may find: cone metric spaces, quasimetric spaces (or b-metric spaces), partial metric spaces, G-metric spaces etc. In some recent papers [Haghi, R. H., Rezapour, Sh. and Shahzad, N., Some fixed point generalizations are not real generalizations, Nonlinear Anal., 74 (2011), 1799-1803], [Haghi, R. H., Rezapour, Sh. and Shahzad, N., Be careful on partial metric fixed point results, Topology Appl., 160 (2013), 450-454], [Samet, B., Vetro, C. and Vetro, F., Remarks on G-Metric Spaces, Int. J. Anal., Volume 2013, Article ID 917158, 6 pages http://dx.doi.org/10.1155/2013/917158 ], the authors pointed out that some of the fixed point theorems transposed from metric spaces to cone metric spaces, partial metric spaces or G-metric spaces, respectively, are sometimes not real generalizations. The main aim of the present note is to inspect what happens in this respect with b-metric spaces.

Additional Information

Author(s)

Berinde, Vasile, Choban, Mitrofan, M.